Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Design Brings World’s First Solar Battery to Performance Milestone

04.08.2015

Sunlight makes the new “aqueous solar flow” battery 20 percent more efficient than today’s lithium-iodine batteries

After debuting the world’s first solar air battery last fall, researchers at The Ohio State University have now reached a new milestone.


Photo by Kevin Fitzsimons, courtesy of The Ohio State University.

Prototype aqueous solar flow battery under development at The Ohio State University. The square piece of solar cell (center) is red, because the researchers are using a red dye to tune the wavelength of light it absorbs and converts to electrons.

In the Journal of the American Chemical Society, they report that their patent-pending design—which combines a solar cell and a battery into a single device—now achieves a 20 percent energy savings over traditional lithium-iodine batteries.

The 20 percent comes from sunlight, which is captured by a unique solar panel on top of the battery, explained Yiying Wu, professor of chemistry and biochemistry at Ohio State.

The solar panel is now a solid sheet, rather than a mesh as in the previous design. Another key difference comes from the use of a water-based electrolyte inside the battery.

Because water circulates inside it, the new design belongs to an emerging class of batteries called aqueous flow batteries.

“The truly important innovation here is that we’ve successfully demonstrated aqueous flow inside our solar battery,” Wu said.

As such, it is the first aqueous flow battery with solar capability. Or, as Wu and his team have dubbed it, the first “aqueous solar flow battery.”

“It’s also totally compatible with current battery technology, very easy to integrate with existing technology, environmentally friendly and easy to maintain,” he added.

Researchers around the world are working to develop aqueous flow batteries because they could theoretically provide affordable power grid-level energy storage someday.

The solar flow battery could thus bridge a gap between today’s energy grid and sources of renewable energy.

"This solar flow battery design can potentially be applied for grid-scale solar energy conversion and storage, as well as producing ‘electrolyte fuels’ that might be used to power future electric vehicles,” said Mingzhe Yu, lead author of the paper and a doctoral student at Ohio State.

Previously, Yu designed the solar panel out of titanium mesh, so that air could pass through to the battery. But the new aqueous flow battery doesn’t need air to function, so the solar panel is now a solid sheet.

The solar panel is called a dye-sensitized solar cell, because the researchers use a red dye to tune the wavelength of light it captures and converts to electrons. Those electrons then supplement the voltage stored in the lithium-anode portion of the solar battery.

Something has to carry electrons from the solar cell into the battery, however, and that’s where the electrolyte comes in. A liquid electrolyte is typically part salt, part solvent; previously, the researchers used the salt lithium perchlorate mixed with the organic solvent dimethyl sulfoxide. Now they are using lithium iodide as the salt, and water as the solvent. (Water is an inorganic solvent, and an eco-friendly one. And lithium iodide offers a high-energy storage capacity with low cost.)

In tests, the researchers compared the solar flow battery’s performance to that of a typical lithium-iodine battery. They charged and discharged the batteries 25 times. Each time, both batteries discharged around 3.3 volts.

The difference was that the solar flow battery could produce the same output with less charging. The typical battery had to be charged to 3.6 volts to discharge 3.3 volts. The solar flow battery was charged to only 2.9 volts, because the solar panel made up the difference. That’s an energy savings of nearly 20 percent.

The project is still ongoing, and the solar flow design will undoubtedly evolve again as the researchers try to make the battery more efficient.

Doctoral student and study co-author Billy McCulloch said that there are many different directions the research could take.

“We hope to motivate the research community to further develop this technology into a practical renewable energy solution,” he added.

The team’s ultimate goal is to boost the solar cell’s contribution to the battery past its current 20 percent—maybe even to 100 percent.

“That’s our next step,” Wu said, “to really achieve a fully solar-chargeable battery.”

Other coauthors on the paper included doctoral students Damian R. Beauchamp, Zhongjie Huang and Xiaodi Ren.

This research was funded by the Department of Energy.

#

Yiying Wu, (614) 247-7810; Wu.531@osu.edu [Wu is currently on sabbatical at Argonne National Laboratory and is best reached by email.]

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pamela Gorder | newswise
Further information:
http://www.osu.edu

More articles from Power and Electrical Engineering:

nachricht Next generation of greenhouses may be fully solar powered
10.02.2020 | North Carolina State University

nachricht How iron carbenes store energy from sunlight -- and why they aren't better at it
07.02.2020 | DOE/SLAC National Accelerator Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>