Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Just like toothpaste: fluoride radically improves the stability of perovskite solar cells

14.05.2019

Solar cells made of perovskite hold much promise for the future of solar energy. The material is cheap, easy to produce and almost as efficient as silicon, the material traditionally used in solar cells. However, perovskite degrades quickly, severely limiting its efficiency and stability over time.

Researchers from Eindhoven University of Technology, energy research institute DIFFER, Peking University and University of Twente have discovered that adding a small amount of fluoride to the perovskite leaves a protective layer, increasing stability of the materials and the solar cells significantly.


The atomic structure of fluoride (NaF) containing metal halide perovskite (FAPbI3). Due to its high eletronegativity, fluoride stabilizes the perovskite lattice by forming strong hydrogen bonds and ionic bonds on the surface of the material.

Credit: Eindhoven University of Technology


Shuxia Tao, assistant professor at the Center for Computational Energy Research, a joint center of the Department of Applied Physics of TU/e and DIFFER.

Credit: Eindhoven University of Technology

The solar cells retain 90 percent of their efficiency after 1000 hours operation at various extreme testing conditions. The findings are published today in the leading scientific journal Nature Energy.

Because they are so cheap to make, perovskite solar cells have been at the center of much recent solar research. As a consequence, their efficiency has risen from less than 4 percent in 2009 to over 24 percent at present, which is close to traditional silicon cells. So-called tandem cells, which combine silicon and perovskite cells, achieve an efficiency of more than 28 percent.

Despite this success, perovskite has a number of defects due to the nature of the material and the way it is manufactured. Over time, vacancies in the atomic structure of the metal halide trigger the degradation of the perovskite under the influence of moisture, light and heat.

Protective layer

The researchers in Eindhoven, Twente and Beijing have experimented with a new type of perovskite, by adding a small amount of fluoride in the production process. Just like fluoride in toothpaste, the fluoride ions form a protective layer around the crystal, preventing the diffusion of the harmful defects.

"Our work has improved the stability of perovskite solar cells considerably", says Shuxia Tao, assistant professor at the Center for Computational Energy Research, a joint center of the Department of Applied Physics of TU/e and DIFFER, and co-author of the paper.

"Our cells maintain 90 percent of their efficiency after 1000 hours under extreme light and heat conditions. This is many times as long as traditional perovskite compounds. We achieve an efficiency of 21.3 percent, which is a very good starting point for further efficiency gains".

Due to its high eletronegativity, fluoride stabilizes the perovskite lattice by forming strong hydrogen bonds and ionic bonds on the surface of the material.

Much of the work of the team from Eindhoven has gone into explaining why fluoride is such an effective ingredient compared to other halogens. Using computer simulations they conclude that part of its success is due to the small size and high electronegativity of fluoride ions. The higher the electronegativity of an element, the easier it attracts electrons of neighbouring elements. This helps fluoride ions to form strong bonds with the other elements in the perovskite compound, forming a stable protective layer.

Future research

The study is seen as an important step towards the successful implementation of perovskite solar cells in the future. However, much work remains to be done. The gold standard in the solar industry is a retention rate of at least 85 percent of original efficiency after ten to fifteen years, a standard which is still some way off for perovskite cells.

"We expect it will take another five to ten years for these cells to become a commercially viable product. Not only do we need to further improve their efficiency and stability, we also need to gain a better theoretical understanding of the relevant mechanisms at the atomic scale. We still don't have all the answers to why some materials are more effective than others in increasing the long-term stability of these cells", says Tao.

Media Contact

Shuxia Tao
S.X.Tao@Tue.nl
31-403-334-831

 @TUEindhoven

http://www.tue.nl/en 

Shuxia Tao | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41560-019-0382-6

More articles from Power and Electrical Engineering:

nachricht Experimental device generates electricity from the coldness of the universe
07.05.2019 | American Institute of Physics

nachricht Everything on a single chip: GaN power ICs with integrated sensors for electric vehicles
06.05.2019 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

Im Focus: New teeth: Highly rigid – and ready for immediate use

Significantly improved glass ceramics

The demands placed on a dental prosthesis are high: it should look natural, endure accidental biting on cherry pits – and if possible, the patient should be...

Im Focus: Researchers take a step towards light-based, brain-like computing chip

Researchers from the Universities of Münster (Germany), Oxford and Exeter (both UK) have succeeded in developing a piece of hardware which could pave the way for creating computers which resemble the human brain. The scientists produced a chip containing a network of artificial neurons that works with light and can imitate the behaviour of neurons and their synapses. The network is able to “learn” information and use this as a basis for computing and recognizing patterns. As the system functions solely with light and not with electrons, it can process data many times faster than traditional systems. The study is published in “Nature”.

A technology that functions like a brain? In these times of artificial intelligence, this no longer seems so far-fetched - for example, when a mobile phone can...

Im Focus: First demonstration of antimatter wave interferometry

An international collaboration with participation of the University of Bern has demonstrated for the first time in an interference experiment that antimatter particles also behave as waves besides having particle properties. This success paves the way to a new field of investigations of antimatter.

Matter waves constitute a crucial feature of quantum mechanics, where particles have wave properties in addition to particle characteristics. This...

Im Focus: Quantum sensor for photons

A photodetector converts light into an electrical signal, causing the light to be lost. Researchers led by Tracy Northup at the University of Innsbruck have now built a quantum sensor that can measure light particles non-destructively. It can be used to further investigate the quantum properties of light.

Physicist Tracy Northup is currently researching the development of quantum internet at the University of Innsbruck. The American citizen builds interfaces...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cause for variability in Arctic sea ice clarified

14.05.2019 | Earth Sciences

2D insulators with ferromagnetism are rare; researchers just identified a new one

14.05.2019 | Materials Sciences

Better microring sensors for optical applications

14.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>