Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019

The rapid development of electronic devices and power equipment, such as new-energy vehicles and robots, has sparked extensive demand for portable power sources.

Electrochemical energy storage, mainly based on ionic intercalation/motion or adsorption/diffusion in electrodes, has been utilized in last two centuries. Ionic transport is slower yet complicated in electrodes when compared to electronic transport.


Ionic channels in novel carbon greatly improve the ionic conductivity and ion kinetics for better electrochemical energy storage.

Credit: ©Science China Press

Indeed, charging/discharging processes in batteries typically take several hours for the efficient use of internal space or pores; supercapacitors can be fully charged/discharged within few seconds if the ionic transport is fast enough.

Obviously, high ionic conductivity and optimized ion kinetics in electrodes are desirable for the better electrochemical energy storage.

Carbon materials, including traditional graphite and activated carbons (ACs), novel carbons such as nanotubes (CNTs), graphene (G), and their derivatives have been demonstrated to be promising candidates for improved energy storage performance, due to their regulable structural features and diverse properties, including-but not limited to-excellent electric conductivity, high intrinsic capacity and chemical stability.

Although big progresses have been achieved based on novel carbons for electrochemical energy storage, the eventual performance is limited by the ion-configuration and ion-kinetics (e.g., LiC6 for graphite in Li-ions battery).

Ideally, efficient ionic channels in carbon electrodes shall generate fast electrolyte transport by migration/diffusion, excellent accessibility of electrolyte in the inner pores, possible new types of ions manner, as well as fast cathodic/anodic reactions.

The ionic behavior has been one of the old yet emerging object for researchers aiming to produce advanced artificial ionic channels.

In a recent overview published in the National Science Review, scientists at the University of Science and Technology of China (USTC) in Hefei, China and at the Université Paul Sabatier (UPS) in Toulouse, France, present the latest advances in designing ionic channels in novel carbons for efficient energy storage.

The authors have traced the typical microfabrication strategies for ionic channels in carbons and the state-of-the-art of studies on energy storage applications; they also reviewed the special ionic responses and kinetic processes among ionic channels, including the constitutive size effects and carbon surface; finally, they proposed that graphene stacking is an ideal model of 2D ionic channels, for the fundamental understanding of ion-configuration/transport in confined space.

"Just like the blood vessel in organisms, a fast ion diffusion towards active sites in ionic channels ensures sufficient energy storage and power delivery of portable devices." Prof. Yanwu Zhu said, "In a broader perspective, with the improvement in both engineering production of atomically tailored channels and full understanding of ion responses, these carbon electrodes can be embedded into clean energy storage devices, for multi-functional alternative under various working conditions."

###

This research has been supported by the funding from Natural Science Foundation of China.

See the article:

Jianglin Ye, Patrice Simon and Yanwu Zhu
Designing ionic channels in novel carbons for electrochemical energy storage
Natl Sci Rev (September 2019) doi: 10.1093/nsr/nwz140
https://academic.oup.com/nsr/advance-article/doi/10.1093/nsr/nwz140/5569389

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Yanwu Zhu | EurekAlert!
Further information:
http://dx.doi.org/10.1093/nsr/nwz140

More articles from Power and Electrical Engineering:

nachricht New electro-pulse plant at TU Freiberg enables energy-efficient processing of high-tech metals
23.01.2020 | Technische Universität Bergakademie Freiberg

nachricht Ultrafast camera takes 1 trillion frames per second of transparent objects and phenomena
22.01.2020 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>