Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

03.09.2015

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power supplies (UPS) for electrical devices.


New materials boost efficiency: Fraunhofer ISE develops three-phase 10 kW UPS inverter with a volume of just five liters and an efficiency of 98.7 percent.

© Fraunhofer ISE


Efficiency of the UPS inverter demonstrator developed by Fraunhofer ISE at different output powers.

© Fraunhofer ISE

The demonstrator, which contains innovative silicon carbide components, was developed in cooperation with an industry partner and achieved an efficiency of 98.7 percent. The research and development findings can be applied to other areas of electronic power conversion in which weight and efficiency play a key role, e. g. electric mobility or portable power supply.

UPS inverters ensure that electrical devices continue to be supplied with power during disruptions to the power grid. In combination with a battery, they allow electrical power outages of varying lengths to be bypassed. For particularly critical loads, such as computer centers, online UPSs offer the highest protection as they are connected between the grid and the load and are thus able to compensate for any disruptions stemming from the grid.

This does mean, however, that all energy is transferred via the UPS inverter even during periods of disruption-free operation. Efficiency therefore plays a very important role for this application, as it is closely connected with the costs required to operate the UPS. This context provided the starting point for the Fraunhofer ISE project, which has now been successfully completed.

Compact and highly efficient in one

Using silicon carbide (SiC) transistors, scientists were able to showcase a UPS inverter with an output of 10 kW and a volume of just five liters. Despite its highly compact design, the inverter still achieved a very high efficiency of 98.7 percent. The good dynamic and static properties of the SiC transistors, such as on-state resistance and switching loss, permit a switching frequency of 100 kHz.

This is around five times higher than that of conventional power electronic silicon components, yet does not significantly increase losses in the semiconductors. Thanks to the high switching frequency, the passive elements in the system, such as inductors and capacitors, could also be reduced in size, while the low losses in the semiconductors permitted the implementation of a compact cooling system for the transistors.

Lower costs thanks to higher efficiency

“On the whole, this design saves system-related costs and materials. In comparison to using a conventional clock rate of 16 kHz, we were able to reduce the size and price of the main inductance in our UPS inverter by around two thirds,” says Cornelius Armbruster, development engineer and member of the team “Future devices and high-efficiency converters” at Fraunhofer ISE. For applications in online UPS systems, efficiency is even more important than reducing materials, as it not only compensates short-term voltage dips in the grid, but also ensures that electrical devices are continuously supplied with power via the UPS.

The annual energy demand of a small server room with a typical capacity utilization amounting to half of the rated power of the UPS system is around 44,000 kWh. Depending on the efficiency of the UPS inverter, the energy demand increases to cover the losses that occur in the inverter, thus explaining the considerable impact that UPS inverter efficiency has on operating costs in the form of electricity costs. In comparison to a conventional system with an efficiency of around 97.4 percent, the newly developed demonstrator (98.7 percent) can reduce annual costs by around 40 percent.

Silicon carbide: a material with prospects

For many years, the Fraunhofer Institute for Solar Energy Systems ISE has been researching and developing highly efficient power electronics for renewable energy systems and the application of the latest components made from gallium nitride and silicon carbide. The technology demonstrator showcased by Fraunhofer ISE, which was commissioned by ROHM Semiconductor, once again highlights the potential of these semiconductor materials.

The SiC transistors used in the demonstrator were provided by ROHM Semiconductor, one of the market leaders in the development of silicon carbide semiconductor components. Thanks to this semiconductor material, transistors will be available for even higher currents in the future, allowing systems to achieve considerably higher output powers.

Weitere Informationen:

http://www.ise.fraunhofer.de/en

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>