Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climbing like ivy

26.02.2019

The project “GrowBot” is developing plant-inspired robots

How is it that ivy, Virginia creeper and clematis can climb? How high is their energy consumption? And is it possible to build robots that behave and move like these plants?


Scientists from the “GrowBot” project are pursuing answers to these questions. For the next four years, their research will be funded with around seven million euros by the European Commission under the Horizon 2020 program line FET (Future and Emerging Technologies).

The main goal of the research groups involved in “GrowBot,” such as the team led by biologist Prof. Dr. Thomas Speck from the University of Freiburg, is the development of robots that climb like plants and adapt to their surrounding environment.

In the future, these robots will be used in urban development, for example, to install sensors or support archaeological investigations.

Dr. Barbara Mazzolai, research director at the Micro-Bio Robotics Center of the IIT (Istituto Italiano di Tecnologie) in Pontedera, Italy, coordinates the project. Plantoid, the world’s first plant robot inspired by the growth behavior of plant roots and their movements, was created under her leadership in 2012.

"GrowBot" focuses on transferring the skills of climbers who can find suitable support structures with their climbing stems and orient themselves and move within them. Thanks to their different anchoring strategies, the plants can attach themselves to different surfaces.

The Freiburg subproject from Speck, the head of the Plant Biomechanics Group and director of the Botanic Garden at the University of Freiburg, is funded with approximately 700,000 euros. The Freiburg scientists have long been analyzing the stem structure and mechanics of climbing plants and their different attachment systems. They have already transferred their results into bio-inspired applications.

The botanists are working together with Dr. Nicholas Rowe from the Institute of Botany and Bioinformatics of Plant Architecture (Botanique et bioinformatique de l’architecture des plantes, UMR – AMAP) in Montpellier, France, on the investigations on climbing plants that are now beginning to provide ideas for a new movement paradigm for “soft robotics.” Together, they will analyze and abstract the functional principles of climbing plants in order to advance the development of novel climbing robots.

“GrowBot” brings together researchers from the fields of robotics, botany, mathematics, materials science and computer science from theUniversity of Freiburg (Freiburg, Germany), HZG- Helmholtz-Zentrum Geesthacht Zentrum Für Material- und Küstenforschung (Teltow, Germany), IIT-Istituto Italiano di Tecnologia (Pontedera, Italy), SSSA- Scuola Superiore Sant'Anna (Pontedera, Italy), GSSI - Gran Sasso Science Institute (L’Aquila, Italy), Linari Engineering Srl (Pisa, Italy), Tel Aviv University (Tel Aviv, Israel), CNRS-Centre National De La Recherche Scientifique (Montpellier, France) and Arkyne Technologies SL (Barcelona, Spain).

“GrowBot” project Website
www.growbot.eu 

Twitter channel
www.twitter.com/GrowBot_project

Facebook page www.facebook.com/growbotproject/?modal=admin_todo_tour

Instagram channel
www.instagram.com/growbot_project/

Contact:
Prof. Dr. Thomas Speck
Plant Biomechanics Group
University of Freiburg
Tel.: 0761/203-2875
thomas.speck@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/climbing-like-ivy?set_l...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>