Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A breakthrough in developing multi-watt terahertz lasers

12.06.2020

Researchers at Lehigh's Center for Photonics and Nanoelectronics use new phase-locking technique to achieve record-high output power for terahertz lasers, report highest radiative efficiency for any single-wavelength semiconductor quantum cascade laser

Terahertz lasers could soon have their moment. Emitting radiation that sits somewhere between microwaves and infrared light along the electromagnetic spectrum, terahertz lasers have been the focus of intense study due to their ability to penetrate common packaging materials such as plastics, fabrics, and cardboard and be used for identification and detection of various chemicals and biomolecular species, and even for imaging of some types of biological tissue without causing damage.


A phase-locking scheme for plasmonic lasers is developed in which traveling surface-waves longitudinally couple several metallic microcavities in a surface-emitting laser array. Multi-watt emission is demonstrated for single-mode terahertz lasers in which more photons are radiated from the laser array than those absorbed within the array as optical losses.

Credit: Yuan Jin, Lehigh University

Fulfilling terahertz lasers' potential for use hinges on improving their intensity and brightness, achieved by enhancing power output and beam quality.

Sushil Kumar, associate professor in Lehigh University's Department of Electrical and Computer Engineering, and his research team are working at the forefront of terahertz semiconductor 'quantum-cascade' laser (QCL) technology. In 2018, Kumar, who is also affiliated with Lehigh's Center for Photonics and Nanoelectronics (CPN) reported on a simple yet effective technique to enhance the power output of single-mode lasers based on a new type of "distributed-feedback" mechanism.

The results were published in the journal Nature Communications and received a lot of attention as a major advance in terahertz QCL technology. The work was performed by graduate students, including Yuan Jin, supervised by Kumar and in collaboration with Sandia National Laboratories.

Now, Kumar, Jin and John L. Reno of Sandia are reporting another terahertz technology breakthrough: they have developed a new phase-locking technique for plasmonic lasers and, through its use, achieved a record-high power output for terahertz lasers. Their laser produced the highest radiative efficiency for any single-wavelength semiconductor quantum cascade laser. These results are explained in a paper, "Phase-locked terahertz plasmonic laser array with 2 W output power in a single spectral mode" published yesterday in Optica.

"To the best of our knowledge, the radiative efficiency of our terahertz lasers is the highest demonstrated for any single-wavelength QCL to-date and is the first report of a radiative efficiency of greater than 50% achieved in such QCLs," said Kumar. "Such a high radiative efficiency beat our expectations, and it is also one of the reasons why the output power from our laser is significantly greater than what has been achieved previously."

To enhance the optical power output and beam quality of semiconductor lasers, scientists often utilize phase-locking, an electromagnetic control system that forces an array of optical cavities to emit radiation in lock step. Terahertz QCLs, which utilize optical cavities with metal coatings (claddings) for light confinement, are a class of lasers known as plasmonic lasers that are notorious for their poor radiative properties. There are only a limited number of techniques available in prior literature, they say, that could be utilized to improve radiative efficiency and output power of such plasmonic lasers by significant margins.

"Our paper describes a new phase-locking scheme for plasmonic lasers that is distinctly different from prior research on phase-locked lasers in the vast literature on semiconductor lasers," says Jin. "The demonstrated method makes use of traveling surface waves of electromagnetic radiation as a tool for phase-locking of plasmonic optical cavities. The efficacy of the method is demonstrated by achieving record-high output power for terahertz lasers that has been increased by an order of magnitude compared to prior work."

Traveling surface waves that propagate along the metal layer of the cavities, but outside in the surrounding medium of the cavities rather than inside, is a unique method that has been developed in Kumar's group in recent years and one that continues to open new avenues for further innovation. The team expects that the output power level of their lasers could lead to collaborations between laser researchers and application scientists toward development of terahertz spectroscopy and sensing platforms based on these lasers.

This innovation in QCL technology is the result of a long term research effort by Kumar's lab at Lehigh. Kumar and Jin jointly developed the finally-implemented idea through design and experimentation over a period of approximately two years. The collaboration with Dr. Reno from the Sandia National Laboratories allowed Kumar and his team to receive semiconductor material to form the quantum cascade optical medium for these lasers.

The primary innovation in this work, according to the researchers, is in the design of the optical cavities, which is somewhat independent from the properties of the semiconductor material. The newly acquired inductively-coupled plasma (ICP) etching tool at Lehigh's CPN played a critical role in pushing the performance boundaries of these lasers, they say.

This research represents a paradigm shift in how such single-wavelength terahertz lasers with narrow beams are developed and will be developed going forward in future, says Kumar, adding: "I think the future of terahertz lasers is looking very bright."

###

The semiconductor lasers were fabricated at the nanofabrication facility of the Center for Photonics and Nanoelectronics at Lehigh University. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. This work has been supported, in part, by grants from the National Science Foundation (ECCS 1351142 and ECCS 1609168).

Media Contact

Lori Friedman
lof214@lehigh.edu
323-377-4312

 @lehighu

http://www.lehigh.edu 

Lori Friedman | EurekAlert!
Further information:
http://dx.doi.org/10.1364/OPTICA.390852

More articles from Power and Electrical Engineering:

nachricht Energy-saving servers: Data storage 2.0
01.07.2020 | Johannes Gutenberg-Universität Mainz

nachricht Mobile robot cleaner takes production hygiene to a higher level
01.07.2020 | Fraunhofer IVV, Branch Lab Processing Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

Im Focus: NASA observes large Saharan dust plume over Atlantic ocean

NASA-NOAA's Suomi NPP satellite observed a huge Saharan dust plume streaming over the North Atlantic Ocean, beginning on June 13. Satellite data showed the dust had spread over 2,000 miles.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, Colin Seftor, an atmospheric scientist, created an animation of the dust and aerosols from the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

First exposed planetary core discovered

01.07.2020 | Physics and Astronomy

Energy-saving servers: Data storage 2.0

01.07.2020 | Power and Electrical Engineering

Laser takes pictures of electrons in crystals

01.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>