Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming Climate Likely to Dramatically Increase Yellowstone Fires by Mid-Century

27.07.2011
Climate is changing fire patterns in the west in a way that could markedly change the face of Yellowstone National Park, according to new research.

A study published online the week of July 25 in the Proceedings of the National Academy of Sciences shows that climate change could increase the frequency of large fires in the Greater Yellowstone Ecosystem to a point that sparks dramatic shifts in the forest vegetation, from conifer-dominated mature forests to younger stands and more open vegetation.

“Large, severe fires are normal for this ecosystem. It has burned this way about every few hundred years for thousands of years,” explains study author Monica Turner, the Eugene P. Odum Professor of Ecology at the University of Wisconsin-Madison and a landscape ecologist who has worked in the Greater Yellowstone area for more than 20 years. “But if the current relationship between climate and large fires holds true, a warming climate will drive more frequent large fires in the Greater Yellowstone Ecosystem in the future.”

Wildfires in this ecosystem are climate-driven and are primed by hotter, drier conditions, such as those predicted by numerous global climate models.

Already fire ecologists have noticed increased fire frequency in the west, associated with temperature increases of less than two degrees Fahrenheit and early spring snowmelt in the mountains.

For the new study, the researchers analyzed large wildfires (greater than 500 acres) and climate data in the northern Rocky Mountains from 1972 to 1999, then used these observed relationships with global climate models to project how expected climate change will impact fires during the 21st century.

“What surprised us about our results was the speed and scale of the projected changes in fire in Greater Yellowstone,” says lead author Anthony Westerling, a professor of environmental engineering and geography at the University of California, Merced. “We expected fire to increase with increased temperatures, but we did not expect it to increase so much or so quickly. We were also surprised by how consistent the changes were across different climate projections.”

They found that fires larger than 500 acres will likely be an annual occurrence by 2050, with fire rotation – the time span over which the entire landscape burns – reduced from a historic range of 100 to 300 years to less than 30 years. Interestingly, the predicted new fire regime closely resembles patterns typical of other landscapes, such as the ponderosa pine forests of the southwest.

“More frequent fires will not be catastrophic to the area – Yellowstone will not be destroyed – but they will undoubtedly lead to major shifts in the vegetation,” says Turner. “It is critical to keep monitoring these forests and study how they respond to future fires.”

For example, the iconic lodgepole pines that dominate much of the current landscape may not have time to recover between big fires, especially if hot, dry summers make it difficult for tree seedlings to germinate and grow following future fires. Some forests could shift toward fast-growing aspen and Douglas fir, or even shrubs and grassland. Such changes would also affect the region’s wildlife, hydrology, carbon storage, and aesthetics.

Westerling, an expert on climate-fire interactions, cautions that the models used in the study will not work once the increase in fires creates a fundamental change in the ecosystem. As the landscape changes, the relationships between climate and fire will change as well.

“The biggest challenge for us is to understand what can happen when the ecosystem is transformed,” he says. “Our projections also depend on the climate models we are using – for example, if projections for winter snow pack or summer rainfall were to increase significantly, that would change our results.”

With more frequent fires, available fuels will also dwindle and eventually become important than climate in limiting fires. At that point, existing models will break down, leaving future outcomes even more unpredictable, Turner says – large fires could even become less severe in the future, making it an important topic for continued study.

“Our research after the immense 1988 fires revealed surprises and tremendous resilience in Yellowstone’s ecosystems, and Yellowstone is likely to surprise us again in the future,” Turner says. “It is an incredibly valuable natural laboratory for studying how natural ecosystems adapt to changing environmental conditions.”

The other study co-authors are Erica Smithwick at the Pennsylvania State University, Bill Romme at Colorado State University, and Mike Ryan of the U.S. Forest Service. The work was funded by the Joint Fire Science Program, U.S. Forest Service Southern Research Station, and the National Oceanic and Atmospheric Administration.

Jill Sakai, (608) 262-9772, jasakai@wisc.edu

Monica Turner, (608) 262-2592, turnermg@wisc.edu; Anthony Westerling via James Leonard, (209) 228-4406, jleonard3@ucmerced.edu

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>