Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The cold-start dilemma


With hybrid cars and plug-in hybrids, cold starts occur more frequently when the internal combustion engine stops and the electric motor pushes the car through town. How quickly can the catalytic converter be preheated so that it can still clean exhaust gases well? What would be the method of choice? A team of Empa researchers is investigating.

From January to September 2019, almost 17,000 hybrids and plug-in hybrids were redeemed in Switzerland – an increase of 60 percent over the previous year. These cars can drive a few kilometers through the city electrically.

Viola Papetti and Panayotis Dimopoulos Eggenschwiler calculated, when a catalyst converter e.g. in a plug-in hybrid car begins to work after a cold start.


They only need the combustion engine on the outskirts of the city when the driver accelerates onto the motorway or country road. The problem here is that the engine makes a cold start at high revs and engine load – quite differently than was previously the case.

Can exhaust gas purification keep up with this? Can the catalytic converters that we have been using since the 1980s be used in such cases? Viola Papetti and Panayotis Dimopoulos Eggenschwiler have calculated this with a specially developed mathematical model. And they offer recommendations on how cat­alysts could be preheated in the future.

Only a hot catalyst works

During a cold start, the engine pushes hot combustion gases through the cold catalytic converter. The catalytic converter must gradually warm up in order to develop its chemical cleaning effect. As long as it is cold, carbon monoxide, nitrogen oxides (NOx) and unburned hydrocarbons penetrate unhindered into the outside air.

The good emission values of modern Euro 6 vehicles are only achieved with a warm catalytic converter. The differences are drastic: in the first 5 minutes after a cold start, a vehicle emits more pollutants than a 1000 km, non-stop, drive with a warm engine.

Chemistry and heat exchange in the catalytic converter

For their model calculations, the research­ers chose a typical catalytic converter for a 2.0-litre petrol engine. Using the OpenFOAM simulation program, they computed how the hot exhaust gases heat up the ceramic honeycomb of the catalyst and the catalytic cleaning layer known as the “washcoat”.

At first, the catalyst is only “heated” by the hot gases, then the heat gradually pene­trates the ceramic and the sheet metal shell of the catalyst. A little later, the chemical reaction sets in: the pollutants are chemically decomposed on the washcoat. They provide additional heat.

Minutes pass without exhaust gas cleaning

The researchers’ model computations start on a winter day at minus 13 degrees Celsius. Nothing happens in the first 30 seconds of a car journey. Then the first quarter of the catalyst begins to heat up.

After one minute, warming begins in the second quarter; only two minutes after starting the engine does the third quarter warm up. It takes a total of three and a half minutes for the catalytic converter to heat up to three quarters and clean all of the engine’s exhaust gases at 140 degrees Celsius.

Scenario for hybrids and plug-in hybrids

The researchers repeated the model calculation for a hybrid car. Suppose the catalytic converter had already been warm once and has now cooled down in stop-and-go traffic because the car was on the road powered only by its electric motor. The “cooled” catalytic converter still has a residual temperature of just under 90 degrees; in this case, too, it is only fully heated after three minutes.

Finally, the researchers simulated a cold start on the entry of a motorway – a typical szenario for plug-in hybrids that can run on battery power to the edge of town and then accelerate. Here is the catalytic converter minus 13 degrees cold, but twice the amount of exhaust gases are flowing through.

With the plug-in hybrid, the catalytic converter is warm enough after 90 seconds to clean all the exhaust gases, because the stronger exhaust gas flow heats up the cat­alytic converter faster, and the chemical reactions start earlier and more strongly.

Preheating possible?

The bad news: even the most modern plug-in hybrids emit toxic pollutants for minutes after each cold start. This could become a problem over the next few years if the EU continues to tighten its emissions regulations. The problem can only be solved if the catalytic converter is heated up as soon as the combustion engine starts. Or even better: before it starts. How could that work?

“I see three possibilities,” says Empa researcher Dimopoulos Eggenschwiler. “The engine could be used to produce hotter exhaust gases, which would cost additional fuel. One could also use the hybrid battery in the cars to preheat the exhaust gases electrically. And the washcoat of the catalytic converter could be preheated with the aid of microwave radiation so that the chemical reaction starts faster.” The question remains: which method costs the least energy?

The researchers have also computed this: When cold starting in the city, it is more efficient to preheat only the exhaust gases. A cold start on the motorway would cost too much energy because of the large amount of gas. Here it is worthwhile to preheat the washcoat directly. “In the end, only a combination of all methods produces the best results,” says Viola Papetti, who carried out the simulation computations.

Useful computation method for electric cars

“And there is one more thing”, says Panayotis Dimopoulos Eggenschwiler at the end of our conversation. “We can also apply our calculation meth­od to battery electric vehicles.”

The Empa researchers’ simulation program can in fact not only calculate the heat distribution in the exhaust tract of a combustion engine, but also that in a lithium-ion battery. This makes the tool perfectly suited to optimizing the cooling technology of electric cars – also during charging. Good rapid charging systems can only be realised with optimum temperature monitoring and cooling.

Wissenschaftliche Ansprechpartner:

Dr. Panayotis.Dimopoulos
Automotive Powertrain Technologies
Phone +41 58 765 43 37


V Papetti, P Dimopoulos Eggenschwiler, A Della Torre, G Montenegro et al.; Heat Transfer Analysis of Catalytic Converters during Cold Starts; SAE Technical Paper (2019); doi: 10.4271/2019-24-0163.

Weitere Informationen:

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Automotive Engineering:

nachricht Three Autonomous Mini Buses for Karlsruhe
14.05.2019 | FZI Forschungszentrum Informatik

nachricht A Jetsons future? Assessing the role of flying cars in sustainable mobility
10.04.2019 | University of Michigan

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>