Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switch2Save: smart windows and glass façades for highly efficient energy management using novel switching technologies

04.10.2019

On October 1, 2019, the EU-funded initiative “Switch2Save” was launched to improve the availability and affordability of electrochromic and thermochromic smart glass technologies. The consortium of ten partners from research and industry will demonstrate the energy saving potential of smart glass solutions in two fully-operational buildings.

Climate change is a topic now on everyone's lips and climate targets are being discussed at all levels. Solutions such as the use of natural resources for energy generation and energy recovery in existing cycles are currently of high research interest.


Effect of an electrochromic window

© ChromoGenics AB

Picture in printable resolution: www.fep.fraunhofer.de/press


Versions of the integration of switchable modules from the Switch2Save project

© Fraunhofer FEP

Picture in printable resolution: www.fep.fraunhofer.de/press

One building block for a sustainable future is the EU Energy Performance of Buildings Directive that targets a full zero-emission building stock all over Europe before 2050.

Glazing in buildings account for up to 60% of energy transfer through modern building envelopes. In winter, heat is emitted to the outside, while in summer, solar radiation heats the building interior which increases the demand for air-conditioning and cooling. Large windows and glass façades – a common design element in modern and large buildings – worsen this effect.

Today, mechanical window blinds and jalousies are used to control solar radiation dependent on the time of day, temperature and sunlight intensity. However, they strongly affect (or impair) comfort and light conditions inside the building. In glass façade buildings, such window blinds – if installed at all – disturb the architectural design and require heavy mounts and profiles.

Smart and switchable glass solutions have the potential to replace mechanical window blinds in the future. However, they are currently optimized towards aesthetic requirements, and not energy saving, are very expensive and hard to come by.

The EU-funded initiative Switch2Save aims to overcome these limitations by combining and maturing EC and TC systems to create lightweight Energy Smart Insulating Glass Units (IGUs) suitable for large windows and glass-façades. EC switching relies on materials that change their light transmitance by applying a low electrical voltage; TC cells are based on materials that change their infrared reflection properties with increasing temperature.

The Switch2Save consortium includes leading universities, research institutes and industries from six EU countries. Within the next four years, the partners will collectively develop a combination of EC and TC cells – with optimized maximum energy saving potential – based on a switchable total energy transmittance (g-value).

They will scale the manufacturing technologies for increased availability and cost effectiveness, assess the performance of the innovative IGUs, and demonstrate the heating and cooling energy saving potential and the lighting comfort in two operational buildings in Greece and Sweden.

Project coordinator Dr. John Fahlteich, Fraunhofer FEP, explains the potential of the technology: “Experts estimated that energy demand for air-conditioning and cooling of buildings will more than double by 2050! Furthermore, large glass façade buildings (e. g. shopping centers, airports, office buildings) require as much as 35% more energy for heating and up to five times more energy for cooling than modern buildings with small windows.

The Switch2Save solution will be able to reduce the total annual heating and cooling energy demand of such large glass buildings by up to 44%. This will be achieved through smart switching protocols based on local, real-time weather and temperature data and the illumination conditions in the building”.

The Switch2Save EC and TC modules are based on nanoscaled thin film stacks that are applied to plastic webs or ultra-thin glass films by using large area vacuum and atmospheric pressure deposition techniques. The modules have a specific weight of less than one kg per square meter – much less than even a single glass pane in a window.

They are easily integrated into IGUs by a lamination step to allow window and glass façade manufacturing with well-established processes – a key requirement for acceptance of the novel technology by construction companies. The integration of wireless switching and standard interfaces directly into the building automation systems will satisfy the needs of building owners and provide maximum energy saving when in operation.

Switch2Save will demonstrate the potential in two representative buildings – Greece’s second largest hospital in Athens and an operational office building in Uppsala, Sweden. The Switch2Save consortium will replace 50 windows and 200 m² glass façade area with the smart glass solution and will perform a full “before-after” comparison of the energy demand for a one-year cycle in both buildings. The findings will accelerate the widespread implementation of energy smart glass and significantly contribute to the goal of a CO2-neutral building stock in the EU before 2050.

During the conference "pro flex 2019 – Roll-to-roll coating of flexible materials" (November 5-6, 2019, Dresden), Dr. John Fahlteich, the Switch2Save project coordinator, will be available with other scientists from Fraunhofer FEP to provide information about the project, vacuum-coating possibilities and plant technology. The conference, with focus on a "Technology Cross-Over", offers the possibility to get information about the numerous possibilities of roll-to-roll technologies for film and ultra-thin glass coating on site.


Project consortium Switch2Save:
Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
www.fep.fraunhofer.de

Fraunhofer Institute for Silicate Research ISC
www.isc.fraunhofer.de

ChromoGenics AB
www.chromogenics.com

School of Mechanical Engineering @ National Technical University of Athens
www.mech.ntua.gr/en

University of West Bohemia
www.zcu.cz/en

SIA AGL Technologies
www.agltechnologies.eu

FASADGLAS BÄCKLIN AB
www.fasadglas.se

Vasakronan AB
www.vasakronan.se

General State Hospital of Nikaia “Agios Panteleimon”
www.nikaia-hosp.gr

VAN ROMPAEY SARA
www.e2arc.com/team

AMIRES s.r.o.
www.amires.eu


About the project:

The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 869929.
Project duration: October 1, 2019 – September 30, 2023

Press contact:

Ms. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://www.ordis.europa.eu/project/rcn/224847/factsheet/de
http://www.fep.fraunhofer.de/proflex

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP
Further information:
https://www.fep.fraunhofer.de/en/press_media/14_2019.html

More articles from Architecture and Construction:

nachricht City research draws on Formula 1 technology for the construction of skyscrapers
10.12.2019 | City University London

nachricht Living bridges: How traditional Indian building techniques can make modern cities more climate-friendly
18.11.2019 | Technische Universität München

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>