Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The inner struggle of the evening primrose: Chloroplasts are caught up in an evolutionary arms race

14.03.2019

Gregor Mendel already knew that the mother and father each inherit half of their genetic material. However, this only applies to the genome in the cell nucleus. Organelles possess their own genetic material, which is passed on in most cases exclusively by the mother. But if the organelles are passed on to the offspring, there is often competition between the organelles originating from father and mother. The mechanisms underlying this biological principle are by far not understood.
A team of scientists led by Stephan Greiner from the Max Planck Institute of Molecular Plant Physiology found that the inheritance of the chloroplast genome is regulated by the fatty acid metabolism.

Inheritance is a complex issue. Which genes came from the mother and which were inherited from the father? It is certain that mother and father each inherit 50 percent of their genetic material, both in plants, as well as in animals and humans.


Chloroplast research in the evening primrose in the summer foil greenhouse at the MPI-MP.

David Ausserhofer

However, that is not all, because in addition to the actual genome in the cell nucleus, there are also organelles that have their own, small genome. These include the mitochondria and, in the case of plants, the chloroplasts additionally. These organelles are normally passed on exclusively from the mother to the offspring, although there are exceptions.

One such exception is the evening primrose, a plant native to America and introduced to Europe in the 17th century. Today, it is an integral part of the Central European flora.

In plant research, the evening primrose is a popular model plant when it comes to the research of organelle inheritance, because both parents of the evening primrose can inherit the chloroplast genetic material to their offspring. But this can result in problems because it is known that the maternal and paternal organelles compete with each other. They cannot co-exist in the offspring as they compete for cellular resources, so one variant must prevail.

But how do chloroplasts fight out this battle? This question could not be answered for a long time. The research team of Stephan Greiner at the MPI-MP and colleagues from Canada, Poland and the USA have uncovered this secret in their current study.

They were able to show that the fatty acid metabolism is decisively responsible for which chloroplast is superior to the other. "Most surprising for us was the discovery that the "fight" between the chloroplast genomes is not decided directly at the gene level, i.e. in the genetic material itself, but that the metabolism plays an important role here," states Stephan Greiner.

Among others, the research team identified an enzyme that catalyzes the first and thus limiting step in fatty acid metabolism. In their analyzes, the researchers found that the gene responsible for the synthesis of this enzyme is undergoing rapid evolution. These rapid changes enable an arms race between the paternal and maternal chloroplasts. They result in mutations that can lead to improved properties of the chloroplasts. An altered fatty acid synthesis could e.g. change the composition of the chloroplast shell, which can be an advantage.

The findings of the researchers help to understand the mechanisms of evolution in more detail. In fact, great competition between maternal and paternal chloroplasts can result in a non-viable progeny. In this case, the parent plants are incompatible. With the knowledge of the mechanisms behind, it would be quite conceivable that one can overcome such limits and in future would be able to make novel crossings, e.g. to breed more productive or resilient crops.

Wissenschaftliche Ansprechpartner:

Dr. Stephan Greiner
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8349
greiner@mpimp-golm.mpg.de

Originalpublikation:

Johanna Sobanski, Patrick Giavalisco, Axel Fischer, Julia M. Kreiner, Dirk Walther, Mark Aurel Schöttler, Tommaso Pellizzer, Hieronim Golczyk, Toshihiro Obata, Ralph Bock, Barbara B. Sears and Stephan Greiner
Chloroplast competition is controlled by lipid biosynthesis in evening primroses
PNAS, 04.03.2019, https://doi.org/10.1073/pnas.1811661116

Weitere Informationen:

https://www.mpimp-golm.mpg.de/2279428/der-innerliche-kampf-der-nachtkerze

Dr. Ulrike Glaubitz | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Agricultural and Forestry Science:

nachricht Back to Nature: Palm oil plantations are being turned back into protected rainforest
21.03.2019 | Forschungsverbund Berlin e.V.

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First implementation of Gecomer<sup>®</sup> Technology in a Collaborative Robot

Scientists at the INM present a Cobot for the first time which is equipped with microstructured surfaces for the handling of objects. Because these structures are very soft and have no sharp corners or edges, the risk of injury to humans is further reduced.

Collaborative robots are a new generation of robots for direct cooperation with humans, even without a safety distance or protective cages. Scientists at the...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Protein BRCA1 as a Stress Coach

21.03.2019 | Life Sciences

Discovery of a new heart muscle component: Researchers identify the function of a motor protein

21.03.2019 | Life Sciences

How Noroviruses control their desire for sweets

21.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>