Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sustainable forest management contributes more to climate protection than forest wilderness

07.02.2020

Our forests serve many functions: They provide renewable resources and energy, they are living and recreational areas and they regulate the climate. A team of scientists led by Professor Ernst-Detlef Schulze investigated how sustainably managed and unmanaged forests in the temperate climate zone differ with respect to their climate balance. The results of the study published in Global Change Biology-Bioenergy show that sustainably managed commercial forests better protect the climate. Their most important contribution is the replacement of fossil fuels by the energetic use of wood.

Through photosynthesis, forests remove the greenhouse gas carbon dioxide (CO₂) from the atmosphere to build up biomass, but they also release CO₂ again through respiration and during biomass decomposition.


View of the southern slope of the Thuringian Forest. The mosaic of small-scale cultivation is clearly visible.

Foto: Ernst-Detlef Schulze

In the uncultivated forests of our temperate climate zones, these two processes are roughly in balance. The amount of CO₂ released by respiration and decomposition is approximately equal to the amount of CO₂ that is bound by photosynthesis to build up biomass.

In contrast, more CO₂ is bound in sustainably managed forests. Here, the wood growth is stronger than in non-cultivated forests because the stand density is controlled. In the forest, the wood supply remains constant, but the biomass gain is taken for harvesting.

It is used to provide firewood as well as short-lived and durable products, from toilet paper to construction timber. Durable wood products have a CO₂-saving effect at least during their lifetime, but they too have a limited life span.

The permanent climate effect develops only when wood is used to generate energy directly or after its use. Only then fossil fuels are replaced.

The climate balance of managed forests has so far been fragmentary, as previous national timber balances underestimate how much wood is consumed as an energy source.

In particular, the use of firewood in rural areas and for small privately owned forests has been insufficiently recorded. Sustainable timber harvesting in a commercial forest replaces about 900 litres of fuel oil per hectare and year or generates 7.4 megawatt hours of electricity and heat.

This corresponds to about 3.5 tons of CO₂, which are saved as emissions of fossil origin. The CO₂ emissions saved are even ten times higher than what is bound up in wood reserves in the nature conservation forest.

"The complete removal of forests from management therefore significantly reduces their contribution to climate protection," concludes Professor Schulze from the Max Planck Institute for Biogeochemistry in Jena.

Currently, forest owners do not receive any recognition for the climate contribution of their commercial forests. On the contrary, logging is counted as an emission, although solid wood delivered to households or industry only releases its CO₂ during subsequent decomposition or combustion.

"We propose that the planned CO₂ tax on the burning of fossil fuels should be used to support the sustainable production of wood, in order to achieve the greatest possible contribution to climate protection," concludes Prof. Schulze.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Ernst-Detlef Schulze
Max-Planck-Institut für Biogeochemie
Hans-Knöll-Str. 10, 07745 Jena
Tel: 03641 576100
Email: dschulze@bgc-jena.mpg.de
Web: https://www.bgc-jena.mpg.de/bgp/index.php/EmeritusEDS/EmeritusEDS

Originalpublikation:

The climate change mitigation effect of bioenergy from sustainably managed forests in Central Europe
Schulze, E.-D., Sierra, C., Egenolf, V., Woerdehoff, R., Irslinger, R., Baldamus, C., Stupak, I., Spellmann, H. (2020)
Global Change Biology-Bioenergy, DOI: 10.1111/gcbb.12672

Weitere Informationen:

https://www.bgc-jena.mpg.de/bgp/index.php/EmeritusEDS/EmeritusEDS Webpage Prof. Schulze

Dr. Eberhard Fritz | Max-Planck-Institut für Biogeochemie

More articles from Agricultural and Forestry Science:

nachricht Microscopic partners could help plants survive stressful environments
30.01.2020 | Washington State University

nachricht Screening sweet peppers for organic farming
29.01.2020 | American Society for Horticultural Science

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>