Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Riding a horse is far more complex than riding simulators

04.08.2015

For equestrian training you do not necessarily need a horse. Riding simulators to train the riders’ skills have become available recently. Scientists of the Vetmeduni Vienna in Austria investigated possible differences between riding a horse and training with a simulator. The result: the simulator is less demanding and less complex than the horse, although simulator training can be initially stressful for riders. The study was published in the Journal of Equine Veterinary Science.

Flight simulators for the training of air pilots are well known. But what about riding simulators? Although the first horse simulator was used at the French National Equestrian School in Saumur already in the 1980s, riding simulators for dressage, show jumping, polo or racing, have become available only recently.


A riding simulator allows specific training of certain movements.

Photo: Manuela Wulf

They look like horses and respond to the aids of the rider via sensors which measure the force exerted by the reins and the rider’s legs. Via a screen in front of the simulator, the rider immerses himself into a virtual equestrian world.

Simulators are aimed at competitive sports

Riders and jockeys use simulators to repeat movement sequences, improve their position in the saddle or simulate the finish of a race, but they also train to avoid injuries when falling off a horse. Jockeys also use riding simulators to regain their physical fitness after injuries. „A riding simulator always responds in the same way and thus allows standardised training programmes” says Natascha Ille from the Vetmeduni Vienna, first author of the study.

Riding a horse is more demanding

Ille and her co-workers from the Graf Lehndorff Institute for Equine Science, a joint research unit of the Brandenburg State Stud and the Vetmeduni Vienna, tested the response of 12 riders in a show jumping course. They compared the riders’ stress hormones, heart rate and heart rate variability when riding a horse and a riding simulator.

The riders’ heart rate was higher when riding a horse than during simulator-based training. „A horse is the bigger challenge compared to a simulator. The movement characteristics of a horse are more complex and the response of a horse in a given situation is only partially predictable. Riding a simulator is thus physically and psychologically less demanding for riders“, explained Ille.

Heart rate data indicate that the training on a horse had a more pronounced stimulatory effect on the riders` sympathetic nervous systems compared to the training on the simulator. Sympathetic activity is known to increase the body´s performance potential in sportive activities.

Analysis of the stress hormone cortisol in saliva collected from the riders also suggests a stress reaction on the simulator. „This may be due to a novel experience for the riders. Participants in the study had never trained on a simulator before, but were well accustomed to working with horses“, Ille suggests.

„Our results demonstrate that riding a horse is far more complex for the human body than riding a simulator“, summarises project supervisor Jörg Aurich. „However, riding simulators could be an excellent preparation for beginners before they mount a horse for the first time. For competitive riders and jockeys, simulators could be a valuable addition to the training with horses”.

Service:
The article “Riding simulator training induces a lower sympathetic response in riders than training with horses”, by Natascha Ille, Mareike von Lewinski, Christine Aurich, Regina Erber, Manuela Wulf, Rupert Palme, Bill Greenwood and Jörg Aurich was published in the Journal of Equine Veterinary Science. doi:10.1016/j.jevs.2015.06.018
http://www.sciencedirect.com/science/article/pii/S0737080615004256

Video:
https://www.youtube.com/watch?v=b0zqWJUaZnk&feature=youtu.be

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Mag. Natascha Ille
Insemination and Embryotransfer Platform
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-5402 or +43 1 25077-6422
natascha.ille@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

How our cellular antennas are formed

22.01.2019 | Life Sciences

Proposed engineering method could help make buildings and bridges safer

22.01.2019 | Architecture and Construction

Bifacial Stem Cells Produce Wood and Bast

22.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>