Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blended ecological knowledge systems yield insight for managing beargrass

22.01.2015

In a study that blended tribal cultural knowledge with scientific methods, U.S. Forest Service researchers identified the ecological conditions of forest sites preferred by harvesters of beargrass for use in traditional weaving.

The study, which is among the first to merge traditional ecological knowledge with scientific ecological knowledge to understand how different knowledge systems can apply to forest management, appears in the January 2015 issue of the Journal of Forestry.


Beargrass leaves are used in traditional basketry by tribal weavers, whose knowledge of good leaf harvesting sites contributed to a novel new study.

Credit: J. Johnson, 2013

"Our premise from the beginning was that the best information for sustaining culturally important plants comes from studies that link traditional ecological and scientific knowledge," said Susan Stevens Hummel, a research forester with the Forest Service's Pacific Northwest Research Station who led the study. "We selected beargrass because of its traditional and commercial value."

Beargrass is a perennial plant that grows in a variety of habitat types and conditions throughout portions of the Western United States. Its durable, flexible leaves, which can be tightly woven, have been harvested by American Indians for generations. The volume of beargrass harvested from federal lands by the multimillion-dollar floral greens industry in California, Oregon, and Washington dwarfs that harvested by tribal members for use in basketry and regalia and for medicinal and decorative purposes.

In the study, Hummel and Frank Lake, a research ecologist with the Forest Service's Pacific Southwest Research Station, combined traditional ecological knowledge and scientific ecological knowledge to identify specific conditions on forested sites that six tribal weavers from three states and four tribes classified as "good," "marginal," or "poor" for beargrass harvesting.

Working from the weavers' subjective classifications, the researchers used field methods adapted from ecology and forestry to quantitatively measure forest and plant characteristics on a total of 72 areas in California, Oregon, and Washington to identify differences among the sites. Among their findings:

  • Levels of coarse woody debris, like fallen trees and branches, differed significantly between good and poor sites in the three states, with sites that tribal harvesters classified as "good" containing less debris than "poor" sites.
  • Sites classified as "good" had fewer trees per acre and were, thus, less dense than sites classified as "poor" by tribal harvesters.
  • Variations in beargrass leaf color decreased as the site class for plant harvest improved.

"The structural elements preferred by tribal weavers for beargrass harvest relate directly to those associated with managing fire behavior in similar forest types," Hummel said.

In addition to a set of site attributes preferred by tribal harvesters, the study also yielded a five-step framework for blending traditional ecological knowledge and scientific ecological knowledge that could be applied to other culturally important plants and fungi, like hazel, huckleberries, and chanterelle mushrooms. The framework begins with consideration of the species' natural and cultural history, and then moves on to recruiting study participants, selecting sites, sampling, sharing preliminary findings with participants, analyzing data, and communicating results.

"We also worked with the tribal weavers during the field visits to develop a decision key that highlights the considerations they gave to certain site and plant conditions," Lake said.

"Our study demonstrates a 'crosswalk' between ecological knowledge derived empirically via the scientific method and via traditional ecological knowledge because clear differences between good and poor harvesting sites were identified by both," Hummel said. "The blended approach we developed and applied demonstrates that scientific ecological knowledge can be advanced by combining qualitative and quantitative methods and that traditional ecological knowledge can be generalized using scientific methods."

###

To learn more about the study, visit http://dx.doi.org/10.5849/jof.13-082.

The Pacific Northwest Research Station--headquartered in Portland, Ore.--generates and communicates scientific knowledge that helps people make informed choices about natural resources and the environment. The station has 11 laboratories and centers located in Alaska, Washington, and Oregon and about 300 employees. Learn more online at http://www.fs.fed.us/pnw.

Yasmeen Sands | EurekAlert!

Further reports about: Beargrass Forest Service Lake USDA ecological findings forest management identify important plants

More articles from Agricultural and Forestry Science:

nachricht Back to Nature: Palm oil plantations are being turned back into protected rainforest
21.03.2019 | Forschungsverbund Berlin e.V.

nachricht The inner struggle of the evening primrose: Chloroplasts are caught up in an evolutionary arms race
14.03.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>