Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algorithm could streamline harvesting of hand-picked crops

13.03.2018

Farmers are the latest beneficiaries in a world of data analytics. Over the past few years, precision agriculture has been helping farmers make smarter decisions and producing a bigger yield. But most of the studies to date have been in row crops harvested by large machines, made possible by data collected by drones and other means. However, Richard Sowers, a professor of industrial and enterprise systems engineering and mathematics at the University of Illinois at Urbana-Champaign, and a team of students have developed an algorithm that promises to give valuable information to farmers of crops picked by hand.

Sowers, along with students Nitin Srivastava and Peter Maneykowski have developed an algorithm which will help streamline the workforce of highly perishable hand-picked crops. Their paper, Algorithmic Geolocation of Harvest in Hand-Picked Agriculture, which will appear in Natural Resource Modeling, presents the results of a study conducted at the harvest of strawberry patches at Crisalida Farms in Oxnard, Calif.


Although there has been other research on precision agriculture in recent years, this study specifically addresses crops, which are currently picked by hand.

Credit: University of Illinois Department of Industrial and Enterprise Systems Engineering

Less than a year ago, Sowers co-authored a paper titled, Hand-picked specialty crops 'ripe' for precision agriculture techniques, addressing the timing and transport of such crops.

"The strawberries that you put on your ice cream or cereal are for the moment picked by a crew of 10 or so workers, who mostly earn a wage per box collected," Sowers noted. "For the consumer, it important that the strawberries are of good quality and look nice."

According to Sowers, the strawberries that appear in clam shells that you find at the market or at your local grocery store are largely in the same condition as they were when they were picked from the field. They are loaded in a box, then a bigger box, then on a pallet and finally onto a truck. The process is then reversed at the market.

"One of the aspects that I'm interested in is the fact that there are humans involved in picking," Sowers said. "Just like Internet browsing history differs from person to person, along similar lines, a workers' ability to harvest strawberries is different. This brings up the question: how do you think about data in that industry? Because the human variability has a huge effect.

"Figuring out what is going on in the field is an important question," he added. "Identifying that certain parts of the field are producing a higher or lower quality harvest can be valuable in harvest strategy."

Rather than requiring a worker to enter data during harvest, which would slow down the process, Sowers' team was able to pinpoint exact movement of each worker through GPS tracking on a smart phone each carried with them. Based on that data, the team developed an algorithm to predict the amount of completed boxes.

The data promises to ultimately lead to more precision techniques for harvesting. For instance, one set of quality control typically occurs at the edge of field and oftentimes there is a backlog of workers waiting in the que. More data will better help plan for best times to provide this control as well as schedule forklifts to pick up pallets and put them in a cooler. Time is of the essence as hot weather can have a dramatic effect to the quality of the produce.

"At the moment, we're just trying to track," Sowers noted. "You can't manage what you can't measure. We're trying to measure what is going on in the field actually in the field, not at the edge of the field where data is currently being collected. If you know moment by moment how much is being harvested, you can better schedule, rearrange harvest crews or re-task."

Sowers further iterates the importance of this measurement to the industry because miscalculation of the workforce could completely eliminate profit.

"If that happens, all the nutrients that went into it (water, fertilizers, nitrogen, etc.) is just wasted," he said. "If you can better allocate resources and prevent or lessen the time that some of those stacks of berries are sitting in the field, that's a win."

The team successfully proved that these behaviors can be tracked and analyzed and is planning to return to California to refine it.

"There is a more and more appreciation for data in this industry," Sowers said. "I'd like to go back and do this on a larger scale so that we can try to compare this to something which is at a production grade. In order to actually have an impact, we need to understand and process the data at a level of certainty which is as good as or comparable to what is needed to actually make some decisions for re-allocating people and for optimizing the layout of fields."

Richard Sowers | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Back to Nature: Palm oil plantations are being turned back into protected rainforest
21.03.2019 | Forschungsverbund Berlin e.V.

nachricht The inner struggle of the evening primrose: Chloroplasts are caught up in an evolutionary arms race
14.03.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>