Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's first passive anti-frosting surface fights ice with ice

18.09.2018

Study provides proof of concept for keeping surfaces 90 percent dry and frost free indefinitely -- without chemicals or energy inputs

Nothing foretells the coming of winter like frost on windshields.


Deicing airplanes using antifreeze chemicals is a common practice during winter months. Virginia Tech's new anti-frosting technology has the potential for use in aerospace applications, including airplane wing manufacturing.

Credit: Public Domain


A scale model of the team's anti-frosting technology applied to a small sheet of untreated aluminum. Elevated micro-fins of sacrificial ice allow the remainder of the surface area to stay dry and frost free.

Credit: Virginia Tech

While the inconvenience of scraping or defrosting car windows may define cold mornings for many drivers, the toll frost takes on the larger economy is more than just a nuisance. From delayed flights to power outages, ice buildup can cost consumers and companies billions of dollars every year in lost efficiency and mechanical breakdown.

New research from Virginia Tech, published this week in ACS Applied Materials & Interfaces, hopes to change that. With the world's first demonstration of a passive anti-frosting surface, the study provides a proof of concept for keeping surfaces 90 percent dry and frost free indefinitely - all without any chemicals or energy inputs.

"Frosting is a big issue, and researchers have been working to solve this problem for years," said Farzad Ahmadi, a doctoral student in Virginia Tech's Department of Biomedical Engineering and Mechanics in the College of Engineering and the study's lead author.

Ahmadi explained that traditional approaches to fighting frost have relied on the application of antifreeze chemicals or energy inputs, like heat. Even the age-old method of throwing salt down on roadways is essentially a chemical treatment. Other recent advances include special coatings for surfaces that prevent frost formation, but these coatings aren't durable and tend to wear off easily.

"For this project, we're not using any kind of special coating, chemicals, or energy to overcome frost," said Ahmadi. "Instead we're using the unique chemistry of ice itself to prevent frost from forming."

Using a simple approach to design, the researchers created their anti-frosting surface on untreated aluminum by patterning ice stripes onto a microscopic array of elevated grooves. The microscopic grooves act as sacrificial areas, where stripes of intentional ice form and create low pressure zones. These low-pressure areas pull nearby moisture from the air onto the nearest ice stripe, keeping the overlapping intermediate areas free of frost, even in humid, sub-freezing conditions.

These sacrificial ice stripes make up only 10 percent of the material's surface area, leaving the remaining 90 percent completely dry.

"The real power of this concept is that the ice stripes themselves are the chemistry, which means the material we use is irrelevant," said Jonathan Boreyko, an assistant professor in the Department of Biomedical Engineering and Mechanics. "As long as you have that proper pattern of sacrificial ice, the material you use could be virtually anything. So there are a lot of possibilities."

The researchers see immediate applications for the technology in the HVAC industry, where the outdoor components of heat exchangers (like heat pumps and fan systems) already utilize a pattern of micro-fins on their surfaces. Manufacturers would just need to apply the right pattern of grooves on those fins to keep frost from building up inside the systems.

Other applications include aerospace materials, like airplane wings. And yes, with a little more development, car windshields are also an option for the anti-frosting technology, which has already been granted a full patent.

In addition to its unprecedented anti-frosting qualities, the technology could carry additional benefits: It may help to offset traditional methods of fighting ice that carry troubling implications for the environment. For example, it takes thousands of gallons of antifreeze chemicals to defrost the wings of one airplane for a single flight. Those chemicals run off into groundwater, get dispersed into the air as tiny droplets, and may have lasting effects on vegetation and wildlife - even people.

"The good thing about ice is that it's environmentally friendly," said Ahmadi. "It's not like other chemicals or even salt, which not only stick around but also get diluted or watered down over time."

Boreyko said one of the study's most important contributions was the development of a rational model for how much chemical (in this case, the chemical is ice) to apply in order to keep a surface dry.

"We've known the trick for centuries," he said. "You put down a low-pressure chemical, like salt, and it keeps everything else around it pretty dry. But now we're making that effect everlasting, and we're making its distribution rational."

###

This research was partially funded by the National Science Foundation and the 3M Company.

Additional co-authors of the study include Grady Iliff, a 2017 engineering science and mechanics graduate from Virginia Tech's undergraduate program; Saurabh Nath, a 2017 graduate from Virginia Tech's engineering mechanics master's program; Pengtao Yue, associate professor in the Virginia Tech Department of Mathematics; and Bernadeta Srijanto and C. Collier, both of Oak Ridge National Laboratory.

Media Assets: Download photos and b-roll here: https://drive.google.com/drive/folders/1s6j3B4WbmBOJ4dIkbkmtacvPQoYkVSQA

Media Contact

Michael Stowe
mstowe@vt.edu
540-231-2611

 @vtnews

http://www.vtnews.vt.edu 

Michael Stowe | EurekAlert!
Further information:
http://dx.doi.org/10.1021/acsami.8b11285

More articles from Materials Sciences:

nachricht Large-scale window material developed for PM2.5 capture and light tuning
18.02.2019 | University of Science and Technology of China

nachricht Engineered metasurfaces reflect waves in unusual directions
18.02.2019 | Aalto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Terahertz wireless makes big strides in paving the way to technological singularity

19.02.2019 | Information Technology

Researchers find trigger that turns strep infections into flesh-eating disease

19.02.2019 | Health and Medicine

Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

19.02.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>