Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do bones fail?

27.08.2019

Can analytical methods from materials science help us better understand human bones? A research team at Empa in Thun is pursuing precisely this approach.

Osteoporosis is a wide­spread disease. Every third woman and every fifth man are affected by bone loss with ad­vanc­ing age. A frequent consequence of this is a fracture of the femoral neck – a painful injury that massively impairs the quality of life of those affected. Pa­tients must reckon with longterm loss of mobility. Long bed rest and the associated often poor general condition even lead to an increased mortality rate.


The disease causes a loss of bone mass due to an imbalance in the natural remodelling process in the tissue and changes in bone quality. These changes affect the microstructure, density of microcracks and tissue properties.

Bones have an extremely complex structure. If, for example, a thigh bone is sawed open, it can be seen that it consists of a hard outer layer and a porous filling. Under the microscope, cylindrical structures of concentric lamellae are visible inside the hard shell, arranged around central blood vessels.

These individual lamellae are only a few thou­sandths of a millimetre thick and consist of a type of natural fibre composite material: collagen fibres in which mineral particles are embedded, embedded in a protein-containing mineral matrix. The higher the mineralization, the stiffer and more fragile the bone.

This hierarchical structure allows the bones to be robust and resistant despite their relatively low density. When bones fracture, it is therefore not sufficient to consider only the density and structure of the bone at the macro level – mechanisms in all scale ranges are responsible for the fracture.

Material analysis for bone

A research group at Empa in Thun led by Jakob Schwiedrzik aims to gain a better understanding of bone failure at the lamella level. "If one only considers bone density, as is usually the case in clinical practice today, the risk of fracture for patients can be predicted relatively well on average.

In individual cases, however, the results may differ considerably and the effective fracture risk may be incorrectly assessed," explains Schwiedrzik. "We hope that our research will enable us to make more accurate predictions for each individual patient in the future".

The researchers are using methods that are actually at home in materials research: They subject even the smallest samples of bone material containing only a single lamella to tensile and com-pression tests.

They are investigating how the material fails and how the measured properties are related to the underlying microstructure. In microstructure analysis, Raman spectroscopy and transmission electron microscopes are used – highly complex instruments that make it possible to precisely observe structural changes in the test objects.

"At the moment, the production and testing of a single bone sample still requires a great deal of time – especially for tensile tests," explains Schwiedrzik. To do this, samples with a defined geometry must first be produced from the material used using a focused ion beam. In order to be able to analyze more samples in less time in the future and to enable statistical evaluation of the experiments, a large part of the current work consists of automating the sample heart position and developing our own measurement setups.

Personal diagnosis

The question of how the methods developed can be used for clinical studies is exciting. A project is currently underway involving researchers from the Inselspital Bern, the University of Bern, ETH Zurich and Empa. Bone material from patients who have received a hip implant is being investigated.

This material will be analysed on several length scales. The aim is to collect data on micromechanical properties, microstructure, cell activity and metabolism and to correlate these with clinical findings and patient data using machine learning. The resulting database will make it possible to quantify the bone quality of a patient and include it in the diagnosis.

Wissenschaftliche Ansprechpartner:

Dr. Jakob Schwiedrzik
Mechanics of Materials and Nanostructures
Phone +41 58 765 63 52
jakob.schwiedrzik@empa.ch

Editor / Media contact
Karin Weinmann
Communications
Phone +41 58 765 47 08
redaktion@empa.ch

Originalpublikation:

https://www.sciencedirect.com/science/article/abs/pii/S8756328215004196

Weitere Informationen:

https://www.empa.ch/web/s206/biomechanics-research

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Materials Sciences:

nachricht Scientists' design discovery doubles conductivity of indium oxide transparent coatings
18.09.2019 | University of Liverpool

nachricht Heat shields for economical aircrafts
18.09.2019 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>