Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What makes the best possible summer sportswear?

15.02.2016

A recently completed research project at the Hohenstein Institute shows how to make sports textiles with outstanding sun protection and wear comfort , and offers design tips for producers.

As part of a research project on "The total energy transmittance of clothing" (IGF No. 17655 N), the Hohenstein Institute has been researching how the structure of the textile and the length of the garment affect people's thermal comfort in intense sunlight. From their work, the scientists have derived some design tips on how to make sportswear that provides the best possible protection from harmful UV radiation and the heat of the sun, while at the same time being very comfortable to wear. The results give sportswear producers and retailers the opportunity to open up new product segments with this kind of improved garment. For end users, these textiles offer a better way of protecting themselves from skin cancers such as "white skin cancer".


Following evaluation of the laboratory tests, wearing trials were carried out using subjects, to further validate the optimised test samples.

© Hohenstein Institute


The sportswear garments made with long and short sleeves and legs were worn by the thermal manikin "Charlie" and exposed to a specific level of thermal radiation.

© Hohenstein Institute

Current problems with sports textiles in summer

In summer, endurance athletes and people who work mainly outdoors are exposed to direct sunlight for several hours at a time and so they have to protect themselves from harmful UV radiation. Long-sleeved clothing and sun blocking creams do offer some protection from UV radiation, but during intense physical or sporting activity they reduce the dissipation of heat through the skin – and this ultimately affects the wearer's performance. On the other hand, short-sleeved clothing allows sweat to evaporate and so cools the body down, but it offers no protection from either carcinogenic UV radiation or infrared thermal radiation.

Starting point and structure

The aim of the research was to examine systematically the relationship between thermoregulation and sun protection. The innovative concept at the heart of the research project was that the scientists would, for the first time, study the effect of textile construction (fibre material, colour, finishing treatment) on clothing physiology properties, UV protection and IR protection.

In the first step, the researchers selected six different textile base materials in which the main fibres were polyester (PES), polyamide (PA) and Lyocell/polypropylene (CLY/PP). Then, in the next step, these were treated with red and black dyes and three UV protection agents.

The textile samples were tested for their UV protection under UV Standard 801 and for the protection they offered against hot sunshine in accordance with DIN EN 410 (total energy transmittance), and also with regard to their heat and moisture management, with the help of the Hohenstein Skin Model and skin sensorial measuring devices.

In the next step, the samples that were particularly good at thermoregulation were made into shirts and trousers with sleeves and legs of different lengths. Then these garments, worn by a thermal manikin, were exposed to a specific amount of heat radiation to simulate warming by the sun - which varied depending on the length of the garment. Finally, following evaluation of the laboratory tests, wearing trials were carried out using volunteers, to further validate the best test samples.

Results: how to make the best possible summer sportswear

It emerged that the ideal blend of fibres should consist of CLY/PP/PA, because fabrics made of CLY/PP are very comfortable to wear and, when combined with PA fibres, also offer a high degree of UV protection. Dyeing the textiles red or black significantly increased the UV protection compared with the white samples, and proved to be more effective than applying the chosen UV-protection agents to the textile.

At the same time, less heat passes through the red and black textiles, but this is at the cost of more heat being absorbed by the textile. In summer and in direct sunshine, sportsmen and -women should opt for loose clothing, because this means the heat that is absorbed is not transmitted straight on to the skin.

Long-sleeved clothing offers better UV protection than short sleeves, because more of the body is covered. However, since the arms are more exposed to the sun than the legs, ideally you should combine long-sleeved sports tops with shorts.

To find out more information about this research project and view the detailed research report, please contact the project manager, sports engineer Martin Harnisch (m.harnisch@hohenstein.de).

Weitere Informationen:

http://www.hohenstein.de/en/inline/pressrelease_123136.xhtml

Marianna Diener | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Barely scratching the surface: A new way to make robust membranes
13.12.2018 | DOE/Argonne National Laboratory

nachricht Topological material switched off and on for the first time
11.12.2018 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>