Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using fine-tuning for record-breaking performance

14.11.2018

Materials scientists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have achieved a new record in the performance of organic non-fullerene based single-junction solar cells. Using a series of complex optimisations, they achieved certified power conversion efficiency of 12.25 percent on a surface area measuring one square centimetre. This standardised surface area is the preliminary stage for prototype manufacture. The results achieved in conjunction with partners from the South China University of Technology (SCUT) have now been published in the renowned journal ‘Nature Energy’.

Organic photovoltaic systems have undergone rapid development during the last few years. In most cases, organic solar cells consist of two layers of semiconductors – one acts as the donor by supplying the electrons, and the second acts as an acceptor or electron conductor.


In contrast to the silicon conventionally used, which must be drawn from a melt or precipitated in vacuum systems, the polymer layers in this system can be deposited from a solution directly on a supporting film.

On the one hand, this means comparably low manufacturing costs, and on the other, these flexible modules can be used more easily than silicon solar cells in urban spaces.

For a long time, fullerenes, which are carbon-based nanoparticles, were considered ideal acceptors, however the intrinsic losses of fullerene-based composites still severely limit their potential efficiency.

The work carried out at FAU has thus resulted in a paradigm shift. ‘With our partners in China, we have discovered a new organic molecule that absorbs more light than fullerenes that is also very durable’, says Prof. Dr. Christoph Brabec, Chair of Materials Science (Materials in Electronics and Energy Technology) at FAU.

Complex standardisation

The significant improvements in performance and durability mean the organic hybrid printed photovoltaics are now becoming interesting for commercial use. However, to develop practical prototypes, the technology must be transferred from laboratory dimensions of a few square millimetres to the standardised dimension of one square centimetre.

‘Significant losses frequently occur during scaling’, says Dr. Ning Li, a materials scientist at Prof. Brabec’s Chair. During a project funded by the German Research Foundation (DFG), Ning Li and his colleagues at SCUT in Guangzou were able to significantly reduce these losses.

In a complex process, they adjusted the light absorption, energy levels and microstructures of the organic semiconductors. The main focus of this optimisation was the compatibility of donor and acceptor and the balance of short-circuit current density and open-circuit voltage, which are important prerequisites for a high output of electricity.

Certified record efficiency

‘I think the best way to describe our work is by imagining a box of Lego bricks’, says Li. ‘Our partners in China inserted and adjusted single molecular groups into the polymer structure and each of these groups influences a special characteristic that is important for the function of solar cells.’

This results in a power conversion efficiency of 12.25 percent – a new certified record for solution-based organic single-junction solar cells with a surface area of one square centimetre, where the acceptor does not consist of fullerenes.

It is also interesting to note that the researchers succeeded in keeping the scaling losses to such low levels that the highest value in the lab on a small surface was only marginally under 13 percent. At the same time, they were able to demonstrate a stability relevant to production under simulated conditions such as temperature and sunlight.

The next step involves scaling up the model to module size at the Solar Factory of the Future at Energie Campus Nürnberg (EnCN) before development of practical prototypes begins.

Wissenschaftliche Ansprechpartner:

Further information:
Prof. Dr. Christoph J. Brabec
Phone: +49 9131 8525426
christoph.brabec@fau.de

Originalpublikation:

‘Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics’, Nature Energy: doi: 10.1038/s41560-018-0263-4

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For bacteria, the neighbors co-determine which cell dies first: The physiology of survival

17.07.2019 | Life Sciences

Harvesting energy from the human knee

17.07.2019 | Physics and Astronomy

Neutrino-Observatorium IceCube am Südpol wird ausgebaut

17.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>