Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using a material's 'memory' to encode unique physical properties

23.12.2019

A new study shows that, as materials age, they 'remember' prior stresses and external forces, which scientists and engineers can then use to create new materials with unique properties.

A new study published in Science Advances found that certain types of materials have a "memory" of how they were processed, stored, and manipulated. Researchers were then able to use this memory to control how a material ages and to encode specific properties that allow it to perform new functions. This creative approach for designing materials was the result of a collaboration between Penn's Andrea Liu and Sidney R. Nagel, Nidhi Pashine, and Daniel Hexner from the University of Chicago.


Researchers have shown that a material's natural aging process can be exploited to create materials with unusual properties.

Credit: Nidhi Pashine

Liu and Nagel have worked together for many years on the physics of disordered systems. In contrast to ordered systems, which have systematic and repeating patterns, disordered systems are arranged randomly. An illustrative example is a natural wall made of tightly packed dirt, where individual grains aren't neatly stacked but instead clump together to form a rigid structure. Researchers are interested in these systems because their randomness allows them to be easily transformed into new mechanical metamaterials with unique mechanical properties.

One important property that materials scientists would like to control is how a material responds when an external force is applied. When most materials are stretched in one direction, they shrink perpendicularly, and when compressed they expand perpendicularly, like a rubber band--when it is stretched it becomes thin, and when compressed becomes thicker.

Materials that do the opposite, ones that shrink perpendicularly when compressed and become thicker when stretched, are known as auxetics. These materials are rare but are suspected to be better at absorbing energy and be more fracture-resistant. Researchers are interested in creating auxetic materials to help improve the function of materials that, among other things, could absorb shock.

In this study, the researchers wanted to see if they could use a disordered material's "memory" of the prior stresses it had encountered to transform the material into something new. First, they ran computer simulations of normal materials under pressure and selectively altered atomic bonds to see which changes could make the material auxetic. They discovered that, by cutting the bonds along the areas with the most external stress, they could digitally create an auxetic material.

Using this insight, the team then took a Styrofoam-like material and added "memory" by allowing the material to age under specified stresses. To make the material auxetic they applied a constant pressure to the material and let it age naturally. "With the whole thing under pressure, it adjusted itself. It turned itself from a normal material into a mechanical metamaterial," says Liu.

This incredibly simple and effective process is a step closer towards a materials science "holy grail" of being able to create materials with specific atomic-level structures without the need for high-resolution equipment or atomic-level modifications. The approach described in this paper instead only requires a bit of patience while the system gains "memory" and then ages naturally.

Liu says that it is a "totally different" way to think about making new materials. "You start with a disordered system, and if you apply the right stresses you can make it come out with the properties you want," she says.

This work also has a strong connection to structures in biology. Organs, enzymes, and filament networks are natural examples of disordered systems that are difficult to emulate synthetically because of their complexity. Now, researchers could use this simpler approach as a starting point to create complex human-made structures that take inspiration from the wide range of properties seen in biology.

Nagel is optimistic about the future. "In addition to making auxetic materials," he says, "we have also used a computer to design in precise mechanical control of distant parts of the material by applying local stresses. This too is inspired by biological activity. We now need to see if this, too, can be made to work by aging a real material in the laboratory."

"The possibilities at this stage seem limitless," says Nagel. "Only by further theoretical work and experimentation will we begin to understand what are the limits to this new concept of material design."

###

This research was supported by National Science Foundation grants DMR-1420709 and DMR-1404841, U.S. Department of Energy grants FG02-03ER46088 and DE-FG02-05ER46199, and Simons Foundation awards 348125, 454945, and 327939.

Media Contact

Erica K Brockmeier
ekbrock@upenn.edu
215-898-8562

 @Penn

http://www.upenn.edu/pennnews 

Erica K Brockmeier | EurekAlert!
Further information:
http://dx.doi.org/10.1126/sciadv.aax4215

Further reports about: mechanical metamaterials physical properties

More articles from Materials Sciences:

nachricht Unexpected behaviour of the material: From 2D crystal to 1D wire
29.01.2020 | Universität Duisburg-Essen

nachricht Rice lab turns trash into valuable graphene in a flash
28.01.2020 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Protein pores packed in polymers make super-efficient filtration membranes

A multidisciplinary team of engineers and scientists has developed a new class of filtration membranes for a variety of applications, from water purification to small-molecule separations to contaminant-removal processes, that are faster to produce and higher performing than current technology. This could reduce energy consumption, operational costs and production time in industrial separations.

Led by Manish Kumar, associate professor in the Cockrell School of Engineering at The University of Texas at Austin, the research team describes their new...

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Scientists find far higher than expected rate of underwater glacial melting

29.01.2020 | Earth Sciences

What's in your water?

29.01.2020 | Power and Electrical Engineering

Screening sweet peppers for organic farming

29.01.2020 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>