Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transporting energy through a single molecular nanowire

11.05.2020

Why single wires are superior to bundles

Photosynthetic systems in nature transport energy very efficiently towards a reaction centre, where it is converted into a useful form for the organism. Scientists have been using this as inspiration to learn how to transport energy efficiently in, for example, molecular electronics.


On the left, the molecular building block for the fibres, comprising a carbonylbridged triarylamine core (red), three amide moieties (blue) and chiral bulky peripheries (grey). Selfassembly in ndodecane results in single supramolecular nanofibres, Which can be assembled in bundles of supramolecular nanofibres.

Credit: Richard Hildner, University of Groningen

Physicist Richard Hildner from the University of Groningen and his colleagues have investigated energy transport in an artificial system made from nanofibres. The results were published in the Journal of the American Chemical Society.

'Natural photosynthetic systems have been optimized by billions of years of evolution. We have found this very difficult to copy in artificial systems,' explains Hildner, associate professor at the University of Groningen. In the light-harvesting complexes of bacteria or plants, light is converted into energy, which is then transported to the reaction centre with minimal losses.

Bundles

Five years ago, Hildner and his colleagues developed a system in which disc-shaped molecules were stacked into nanofibres with lengths exceeding 4 micrometres and a diameter of just 0.005 micrometres. By comparison, the diameter of a human hair is 50-100 micrometres. This system can transport energy like the antennas in photosynthetic systems. 'But we sometimes saw that energy transport became stuck in the middle of our four micrometre-long fibres. Something in the system appeared to be unstable,' he recalls.

To improve the energy transport efficiency, Hildner and his colleagues created bundles of nanofibres. 'This is the same idea as that which is used in normal electronics: very thin copper wires are bundled together to create a more robust cable.' However, the bundled nanofibers turned out to be worse at transporting energy than single fibres.

Coherence

The reason for this lies in something called coherence. When energy is put into the molecules that make up the fibres, it creates an excited state or exciton. However, this excited state is not a packet of energy that is associated with a single molecule. Hildner: 'The energy is delocalized over several molecules and it can, therefore, move fast and efficiently across the fibre.' This delocalization means that the energy moves like a wave from one molecule to the next. By contrast, without coherence, the energy is limited to a single molecule and must hop from one molecule to the next. Such hopping is a much slower way to transport energy.

'In the bundles, coherence is lost,' explains Hildner. This is caused by the strain that the bundle imposes on each fibre within it. 'The fibres are compressed and this causes side groups of the molecules to crash into each other.' This changes the energy landscape. In a single fibre, the energy of the excited states of several neighbouring molecules are at the same level. In a bundle, the local environments of the molecules differ, leading to a difference in energy levels.

Bike tour

'Imagine that you are on a bike tour. The height profile of the tour represents the energy levels in the molecules that make up the fibres,' says Hildner. 'If you are cycling in the Netherlands, you will arrive at your destination quickly because the terrain is flat. In contrast, in the Alps, you must cycle uphill quite often, which is tough and slows you down.' Thus, when the molecules' energy levels in the fibres are different, transport becomes more difficult.

This discovery means that the team's original idea, to increase energy transport efficiency using bundles of nanofibres, turned out to be a failure. However, they have learned valuable lessons from this, which can now be used by theoretical physicists to calculate how to optimize transport in molecular fibres. 'My colleagues at the University of Groningen are currently doing just that. But we already know one thing: if you want good energy transport in nanofibres, do not use bundles!'

Simple Science Summary

Plants and photosynthetic bacteria catch sunlight via molecular antennas, which then transfer the energy to a reaction centre with minimal losses. Scientists would like to make molecular wires that can transfer energy just as efficiently. Scientists at the University of Groningen created tiny fibres by stacking certain molecules together. Single fibres transport energy, although they sometimes malfunction. Creating bundles of fibres (as is done with copper wiring) was thought to be the solution but this turned out not to be the case. Energy moves fast when spread out across several molecules. In single fibres, this works well but in bundled fibres, this spreading out is hampered as the molecules experience strain. These results can be used to better understand energy transport along molecular wires, which will help in the design of better wires.

###

Reference: Bernd Wittmann, Felix A. Wenzel, Stephan Wiesneth, Andreas T. Haedler, Markus Drechsler, Klaus Kreger, Jürgen Köhler, E. W. Meijer, Hans-Werner Schmidt and Richard Hildner: Enhancing Long-Range Energy Transport in Supramolecular Architectures by Tailoring Coherence Properties. J. Am. Chem. Soc. First online 11 april 2020 Affiliations: University of Bayreuth, Germany; University of Eindhoven, the Netherlands; University of Groningen, the Netherlands.

Rene Fransen | EurekAlert!
Further information:
http://dx.doi.org/10.1021/jacs.0c01392

More articles from Materials Sciences:

nachricht Looking at linkers helps to join the dots
10.07.2020 | King Abdullah University of Science & Technology (KAUST)

nachricht Goodbye Absorbers: High-Precision Laser Welding of Plastics
10.07.2020 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>