Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T-shirt generates electricity from temperature difference between body and surroundings

25.11.2019

The 'e-textile' prototype uses sustainable and low-cost materials like tomato skin

Researchers of the Faculty of Science of the University of Malaga (UMA) have designed a low-cost T-shirt that generates electricity from the temperature difference between the human body and the surroundings.


Researchers of the Faculty of Science of the University of Malaga (UMA) have designed a low-cost T-shirt that generates electricity from the temperature difference between the human body and the surroundings.

Credit: University of Malaga

We are talking about the "e-textile" prototype, developed in collaboration with the Italian Institute of Technology in Genoa (IIT) based on sustainable methods and low-cost materials like tomato skin.

"So far, metals have been the chemical elements commonly used in the fabrication of electronic devices. This project took a step forward, and we have been able to generate electricity by using light and more affordable and less toxic materials", explains José Alejandro Heredia, one of the authors of this project.

The formula is very simple: water and ethanol -a type of ecological alcohol- derived from tomato skin and carbon nanoparticles. A solution that, according to experts, when heated, penetrates and adheres to cotton, thus obtaining electrical properties, like those generated by tellurium, germanium or lead, but from biodegradable materials.

"When someone walks or runs, warms up. If such person wore a T-shirt designed with these characteristics, the difference between his/her body and the colder temperature of the surroundings could generate electricity", says Susana Guzmán, another author from the UMA.

"Iron Man" made in UMA

The results of this project, in which the Italian researcher Pietro Cataldi has participated, were published in the journal Advanced Functional Materials. At present, this group of scientists continues their work on the development of devices that can be incorporated into textile to be able to, for example, generate light to make this T-shirt reflective or even charge a mobile phone without a charger.

Other possible applications include biomedicine, thanks to the monitoring of signals of each user, or robotics, because the use of these lighter and more flexible materials enables improvement of robot features.

"In a previous study, we were able to create a Wi-Fi antenna from tomato skin and graphene. We are also studying the possibility of incorporating this invention into the "e-textile" T-shirt, which would enable us to be like the superhero Iron Man, who wears a suit with all types of technological devices, and even fly", jokes Guzmán.

José Alejandro Heredia and Susana Guzmán are members of the Department of Molecular Biology and Biochemistry of the University of Málaga. They are part of the Institute for Mediterranean and Subtropical Horticulture (IHSM) and their main R+D+i lines include the fabrication of electronic devices with biodegradable materials.

José Alejandro Heredia and Susana Guzmán are members of the Department of Molecular Biology and Biochemistry of the University of Málaga. They are part of the Institute for Mediterranean and Subtropical Horticulture (IHSM) and their main R+D+i lines include the fabrication of electronic devices with biodegradable materials.

Bibliographic reference: Adv. Funct. Mater. 2019, 1907301

Media Contact

María Guerrero
mariaguerrero@uma.es
0034-952-131-129

http://www.uma.es 

María Guerrero | EurekAlert!
Further information:
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201907301#accessDenialLayout
http://dx.doi.org/10.1002/adfm.201907301

More articles from Materials Sciences:

nachricht Tiny quantum sensors watch materials transform under pressure
13.12.2019 | DOE/Lawrence Berkeley National Laboratory

nachricht Light, strong, and tough: Researchers at the University of Bayreuth discover unique polymer fibres
13.12.2019 | Universität Bayreuth

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>