Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sustainable solvent platform for photon upconversion increases solar utilization efficiency

04.12.2017

The conversion of solar energy into electricity is currently restricted by a concept known as the Shockley-Quesser limit. This limitation allows only photons that have higher energies than those of the bandgap to be used, while those with lower energies are wasted. In an effort to obtain a solution to this problem and make solar energy conversion more efficient, the process of converting photons with lower energies into ones with higher energies, called photon upconversion, was developed.

In the past decade, a method of photon upconversion that uses triplet-triplet annihilation (TTA) of organic molecules has drawn attention because it is presently the only method applicable to weak light such as sunlight. In this method, two kinds of organic molecules or chromophores, a sensitizer and an emitter, are combined. The sensitizer will absorb a photon and convert it to its excited triplet state.


Deep eutectic solvents used as the medium of sensitizer and emitter chromophores (left) and the photon upconverter developed (right). The sample converts low-intensity (a few mW) green light into clear blue emission and demonstrates high thermal stability during exposure to a burner flame for 1 min.

Credit: Yoichi Murakami

The excitation energy is then transferred to the emitter. When two emitters that have the excitation energy collide, one will convert to its lowest excited singlet state and release an upconverted photon that can be harvested for energy conversion.

While many studies into photon upconversion have been carried out in organic solvents, their practical use is limited due to the high vapor pressures, vapor toxicity, flammability, and lack of thermal stability of the solvent mixtures. Multiple approaches have been proposed so far to overcome these limitations, including the use of viscous fluidic media like ionic liquids that have low vapor pressures and high thermal stability.

Ionic liquids are also limited in practicality, however, due to the relatively high costs of starting materials and synthetic processes, as well as their poor biodegradability.

To fundamentally resolve these previous problems, scientists at Tokyo Tech developed a TTA photon upconversion using a new class of liquids known as deep eutectic solvents (DESs). DESs are a potential alternative to ionic fluids, because they possess desirable properties similar to those of ionic fluids and can be created through a simple mixing of two substances, a hydrogen bond donor and a hydrogen bond acceptor, without the need for synthetic processes.

The starting substances for the generation of DESs are also generally much cheaper, safer, and more biodegradable than those needed for the creation of ionic liquids, making them an ideal alternative.

The photographs of the DESs used and photon upconverters developed are shown in Fig. 1. The prepared DES was optically transparent and colorless (left of Fig. 1) and used as the solvent for the sensitizer and emitter chromophores.

The photographs of the photon upconverter developed are shown in the right of Fig. 1. The sample converts weak incident green light (wavelength: 532 nm; power: 2-3 mW) into blue emission (wavelength: ~440 nm). The expected high thermal stability was confirmed by the absence of ignition and fuming during exposure to a burner flame for 1 min.

Notably, the photon upconversion quantum yield of the samples reached 0.21 (where the maximum quantum yield is defined as 0.5; one higher-energy photon is created by using two lower-energy photons at maximum in photon upconversion). This corresponds to the upconversion quantum efficiency of 42 % (whose maximum is defined as 100%). This is a relatively high efficiency.

Overall, the scientists developed a novel material platform for TTA photon upconversion using cheaper, less toxic, and thermally stable DESs. This achievement is considered as an important landmark for the realization of practical application of photon upconversion technology.

Media Contact

Emiko Kawaguchi
media@jim.titech.ac.jp
81-357-342-975

http://www.titech.ac.jp/english/index.html 

Emiko Kawaguchi | EurekAlert!

More articles from Materials Sciences:

nachricht Pressure tuned magnetism paves the way for novel electronic devices
18.12.2018 | Bar-Ilan University

nachricht Researchers observe charge-stripe crystal phase in an insulating cuprate
18.12.2018 | Boston College

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>