Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The First Seconds in a Building’s Life

20.04.2012
X-ray diffraction studies of cement hydration on the millisecond scale

No matter if it is a giant complex, a high-rise, or an underground project, modern architecture cannot get along without concrete. The component in concrete that holds the other components together is cement.

In order to control the properties of concrete, it is important to know what occurs as it hardens. German scientists have now successfully watched the first few seconds in the “life” of cement by means of X-ray diffraction. In the journal Angewandte Chemie, they explain the role of the superplasticizers added to concrete.

Concrete is made from sand, gravel, additives, water, and cement. Portland cement is a complex mixture of finely ground limestone, clay, sand, and iron ore—mainly calcium silicate with fractions of aluminum and iron compounds and sulfates. Once mixed with water, chemical reactions occur between the components of cement, and it solidifies and hardens. When the process is finished, it remains solid and stable, even under water.

The enormous stability of concrete comes from crystalline needles that form during this process and are firmly interlocked with each other. Various additives are used to optimize the properties of concrete, including a class of superplasticizers based on polycarboxylate (PCE). These improve the flow of the concrete, making it easier to pour. The water content can be reduced to improve the concrete’s compressive strength.

“Detailed insight into the different stages of the hydration process is essential for a more complete understanding of how these processes can be effectively influenced,” explains Franziska Emmerling of the BAM Federal Institute of Materials Research and Testing in Berlin (Germany). “In particular, the phase development at the beginning of hydration is not yet well understood.” The very rapidly initiated reaction of the cement clinker component C3A (Ca3Al2O6) with sulfate (SO42-) to form ettringite (Ca6Al2(SO4)3(OH)12•26H2O) seems to be critical. By means of high-resolution X-ray diffraction experiments, Emmerling’s team has now been able to follow this reaction on the millisecond timescale. The deflections experienced by X-rays as they pass through a material provide information about its crystal structure. In order to prevent interference from any supporting material, the sample is held in suspension by acoustic waves.

This has also made it possible to clarify the function of PCE superplasticizers. Says Emmerling: “Immediately after water contacts the cement, the PCE adsorbs onto the surface of the clinker C3A; the particles remain in suspension because they then repel each other. The PCE is then gradually replaced by sulfate ions, which retards the incipient ettringite crystallization. This leaves more free water in the system, dissolving more crystalline components—the resulting concrete can thus flow for a longer period and becomes more dense.”

About the Author
Dr. Franziska Emmerling leads the department of Structure Analysis at the Federal Institute for Materials Research and Testing (BAM) in Berlin. Her main research areas include the in-situ analysis of different material systems using synchrotron radiation. Besides that, she lectures since two year at the Humboldt University in Berlin in the field of anorganic and solid state chemistry.
Author: Franziska Emmerling, BAM Federal Institute of Materials Research and Testing, Berlin (Germany), http://www.bam.de/de/kompetenzen/fachabteilungen/abteilung_1/fg13/fg13_ag1.htm
Title: First Seconds in a Building’s Life—In Situ Synchrotron X-Ray Diffraction Study of Cement Hydration on the Millisecond Timescale

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201200993

Franziska Emmerling | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Materials Sciences:

nachricht Caterpillars of the wax moth love eating plastic: Fraunhofer LBF investigates degradation process
06.08.2020 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Machine learning methods provide new insights into organic-inorganic interfaces
04.08.2020 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>