Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The First Seconds in a Building’s Life

20.04.2012
X-ray diffraction studies of cement hydration on the millisecond scale

No matter if it is a giant complex, a high-rise, or an underground project, modern architecture cannot get along without concrete. The component in concrete that holds the other components together is cement.

In order to control the properties of concrete, it is important to know what occurs as it hardens. German scientists have now successfully watched the first few seconds in the “life” of cement by means of X-ray diffraction. In the journal Angewandte Chemie, they explain the role of the superplasticizers added to concrete.

Concrete is made from sand, gravel, additives, water, and cement. Portland cement is a complex mixture of finely ground limestone, clay, sand, and iron ore—mainly calcium silicate with fractions of aluminum and iron compounds and sulfates. Once mixed with water, chemical reactions occur between the components of cement, and it solidifies and hardens. When the process is finished, it remains solid and stable, even under water.

The enormous stability of concrete comes from crystalline needles that form during this process and are firmly interlocked with each other. Various additives are used to optimize the properties of concrete, including a class of superplasticizers based on polycarboxylate (PCE). These improve the flow of the concrete, making it easier to pour. The water content can be reduced to improve the concrete’s compressive strength.

“Detailed insight into the different stages of the hydration process is essential for a more complete understanding of how these processes can be effectively influenced,” explains Franziska Emmerling of the BAM Federal Institute of Materials Research and Testing in Berlin (Germany). “In particular, the phase development at the beginning of hydration is not yet well understood.” The very rapidly initiated reaction of the cement clinker component C3A (Ca3Al2O6) with sulfate (SO42-) to form ettringite (Ca6Al2(SO4)3(OH)12•26H2O) seems to be critical. By means of high-resolution X-ray diffraction experiments, Emmerling’s team has now been able to follow this reaction on the millisecond timescale. The deflections experienced by X-rays as they pass through a material provide information about its crystal structure. In order to prevent interference from any supporting material, the sample is held in suspension by acoustic waves.

This has also made it possible to clarify the function of PCE superplasticizers. Says Emmerling: “Immediately after water contacts the cement, the PCE adsorbs onto the surface of the clinker C3A; the particles remain in suspension because they then repel each other. The PCE is then gradually replaced by sulfate ions, which retards the incipient ettringite crystallization. This leaves more free water in the system, dissolving more crystalline components—the resulting concrete can thus flow for a longer period and becomes more dense.”

About the Author
Dr. Franziska Emmerling leads the department of Structure Analysis at the Federal Institute for Materials Research and Testing (BAM) in Berlin. Her main research areas include the in-situ analysis of different material systems using synchrotron radiation. Besides that, she lectures since two year at the Humboldt University in Berlin in the field of anorganic and solid state chemistry.
Author: Franziska Emmerling, BAM Federal Institute of Materials Research and Testing, Berlin (Germany), http://www.bam.de/de/kompetenzen/fachabteilungen/abteilung_1/fg13/fg13_ag1.htm
Title: First Seconds in a Building’s Life—In Situ Synchrotron X-Ray Diffraction Study of Cement Hydration on the Millisecond Timescale

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201200993

Franziska Emmerling | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Materials Sciences:

nachricht Understanding high efficiency of deep ultraviolet LEDs
22.02.2019 | Tohoku University

nachricht Large-scale window material developed for PM2.5 capture and light tuning
18.02.2019 | University of Science and Technology of China

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>