Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers upend conventional wisdom on thermal conductivity

06.07.2018

UH-led team created boron-arsenide crystal with high thermal conductivity

Scientists have long known that diamond is the best material for conducting heat, but it has drawbacks: It is costly and is an electrical insulator; when paired with a semiconductor device, diamond expands at a different rate than the device does when it is heated.


Scientists have reported growing a crystal created from boron and arsenic, with a thermal conductivity more than twice that of copper.

Credit: University of Houston

Now a group of researchers from around the United States has reported that a crystal grown from two relatively common mineral elements - boron and arsenic - demonstrates far higher thermal conductivity than any other semiconductors and metals currently in use, including silicon, silicon carbide, copper and silver.

The discovery has the potential to address a range of technological challenges, including cooling electronic devices and nanodevices, said physicist Zhifeng Ren, a researcher with the Texas Center for Superconductivity at the University of Houston and one of the corresponding authors on the paper announcing the discovery, published Thursday, July 5, in the journal Science.

Thermal conductivity is measured in the unit of Wm-1K-1, used to denote the amount of heat that can pass through a material that is one meter long when the temperature difference from one side to the other is 1 degree Kelvin. The boron-arsenide crystal has a conductivity in excess of 1,000 at room temperature, the researchers reported.

Copper, by comparison, has a conductivity of about 400; diamond has a reported thermal conductivity of 2,000.

Previous reported efforts to synthesize boron-arsenide have yielded crystals measuring less than 500 micrometers - too small for useful application.

But the researchers now have reported growing crystals larger than 4 millimeters by 2 millimeters by 1 millimeter. A larger crystal could be produced by extending the growing time beyond the 14 days used for the experiment, they said.

Working with Tom Reinecke at the Naval Research Lab and Lucas Lindsay at Oak Ridge National Laboratory, David Broido, a theoretical physicist at Boston College and one of the authors of the paper, first proposed that the combination could yield a high thermal conductivity crystal, defying the conventional theory that ultrahigh lattice thermal conductivity could only occur in crystals composed of strongly bonded light elements, limited by anharmonic three-phonon processes.

This work confirms the theory, although it took a while. Several researchers involved in the current publication, along with Bing Lv, then a researcher at UH and now a faculty member at the University of Texas-Dallas, reported synthesizing a small crystal with a conductivity of about 200 in 2015.

Subsequent work in Ren's lab resulted in the larger, more highly conductive crystal reported in Science.

Broido called the confirmation an "example of the collaborative interplay between theory, materials synthesis and measurement. That this was accomplished and the theory confirmed is a testament to the persistence and skill of the synthesis and measurement teams."

Paul Ching-Wu Chu, T.L.L. Temple Chair of Science at UH and founding director of the Texas Center for Superconductivity, said combining boron with arsenic was a complex challenge.

"The mismatch between the physical properties of boron and arsenic makes the synthesis of boron arsenide extremely difficult and boron-arsenide single crystals almost impossible," he said.

The researchers created the crystal using chemical vapor transport, complicated by the fact that boron has a melting point of 2,076 degrees Centigrade, while arsenic changes directly from a solid to a gas.

Co-author Shuo Chen, assistant professor of physics at UH, said the crystal could be useful in cooling electronic devices.

"Heat dissipation is crucial for high power density electronics," she said. "Therefore, materials with high thermal conductivity are necessary to serve as substrates in high power density electronics."

The potential for a semiconductor with high thermal conductivity is immense, Chen said.

"Using femto-second laser pulses, we were able to measure the thermal conductivities of the boron-arsenide crystals," added Bai Song, a postdoctoral associate mentored by Professor Gang Chen in MIT's Department of Mechanical Engineering. "Such high thermal conductivity makes boron-arsenide attractive for microelectronic applications both as device materials and as heat sink materials."

The project was funded by the U.S. Navy's Multidisciplinary University Research Initiative, led by Li Shi, professor of mechanical engineering at the University of Texas at Austin.

Shi noted that team members at UT-Austin and MIT devised four different methods to validate boron arsenide as the first known semiconductor with a thermal conductivity as high as 1000 Wm-1 K-1 at room temperature.

The next step, he said, will be "to explore device technologies with the boron arsenide bulk crystals."

###

Additional researchers involved with the project include Fei Tian, Jingying Sun, Geethal Amila Gamage Udalamatta Gamage, Haoran Sun, Shuyuan Huyan, Hamidreza Ziyaee and Liangzi Deng, all of UH; Ke Chen, Te-Huan Liu and Zhiwei Ding, all of the Massachusetts Institute of Technology; Xi Chen, Sean Sullivan, Jaehyun Kim, Jianshi Zhou and Yuanyuan Zhou, all of UT-Austin; Navaneetha K. Ravichandran of Boston College; Miguel Goni and Aaron J. Schmidt of Boston University; and Yinchuan Lv and Pinshane Y. Huang of the University of Illinois Urbana-Champaign.

Media Contact

Jeannie Kever
jekever@uh.edu
713-743-0778

 @UH_News

http://www.uh.edu/news-events

Jeannie Kever | EurekAlert!

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>