Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers ‘Nanoweld’ by Applying Light to Aligned Nanorods in Solid Materials

22.02.2013
Researchers from North Carolina State University have developed a way to melt or “weld” specific portions of polymers by embedding aligned nanoparticles within the materials. Their technique, which melts fibers along a chosen direction within a material, may lead to stronger, more resilient nanofibers and materials.

Physicists Jason Bochinski and Laura Clarke, with materials scientist Joe Tracy, placed specifically aligned gold nanorods within a solid material. Gold nanorods absorb light at different wavelengths, depending upon the size and orientation of the nanorod, and then they convert that absorbed light directly into heat. In this case, the nanorods were designed to respond to light wavelengths of 520 nanometers (nm) in a horizontal alignment and 800 nm when vertically aligned. Human beings can see light at 520 nm (it looks green), while 808 nm is in the near infrared spectrum, invisible to our eyes.

When the different wavelengths of light were applied to the material, they melted the fibers along the chosen directions, while leaving surrounding fibers largely intact.

“Being able to heat materials spatially in this way gives us the ability to manipulate very specific portions of these materials, because nanorods localize heat – that is, the heat they produce only affects the nanorod and its immediate surroundings,” Tracy says.

According to Bochinski, the work also has implications for optimizing materials that have already been manufactured: “We can use heat at the nanoscale to change mechanical characteristics of objects postproduction without affecting their physical properties, which means more efficiency and less waste.”

The researchers’ findings appear in Particle & Particle Systems Characterization. The work was funded by grants from the National Science Foundation and Sigma Xi. Graduate students Wei-Chen Wu and Somsubhra Maity and former undergraduate student Krystian Kozek contributed to the work.

Note to editors: An abstract of the paper follows.

“Anisotropic Thermal Processing of Polymer Nanocomposites via the Photothermal Effect of Gold Nanorods”

Authors: Jason Bochinski, Laura Clarke, Joe Tracy, Somsubrha Maity, Krystian Kozek and Wei-Chen Wu, North Carolina State University

Published: Particle & Particle Systems Characterization

Abstract:
By embedding metal nanoparticles within polymeric materials, selective thermal polymer processing can be accomplished via irradiation with light resonant with the nanoparticle surface plasmon resonance due to the photothermal effect of the nanoparticles which efficiently transforms light into heat. The wavelength and polarization sensitivity of photothermal heating from embedded gold nanorods is used to selectively process a collection of polymeric nanofibers, completely melting those fibers lying along a chosen direction while leaving the remaining material largely unheated and unaffected. Fluorescence-based temperature and viscosity sensing was employed to confirm the presence of heating and melting in selected fibers and its absence in counter-aligned fibers. Such tunable specificity in processing a subset of a sample, while the remainder is unchanged, cannot easily be achieved through conventional heating techniques.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>