Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop spectroscopic thermometer for nanomaterials

15.03.2018

A scientific team led by the Department of Energy's Oak Ridge National Laboratory has found a new way to take the local temperature of a material from an area about a billionth of a meter wide, or approximately 100,000 times thinner than a human hair.

This discovery, published in Physical Review Letters, promises to improve the understanding of useful yet unusual physical and chemical behaviors that arise in materials and structures at the nanoscale. The ability to take nanoscale temperatures could help advance microelectronic devices, semiconducting materials and other technologies, whose development depends on mapping the atomic-scale vibrations due to heat.


From left, Andrew Lupini and Juan Carlos Idrobo use ORNL's new monochromated, aberration-corrected scanning transmission electron microscope, a Nion HERMES to take the temperatures of materials at the nanoscale.

Credit: Oak Ridge National Laboratory, US Dept. of Energy; photographer Jason Richards

The study used a technique called electron energy gain spectroscopy in a newly purchased, specialized instrument that produces images with both high spatial resolution and great spectral detail. The 13-foot-tall instrument, made by Nion Co., is named HERMES, short for High Energy Resolution Monochromated Electron energy-loss spectroscopy-Scanning transmission electron microscope.

Atoms are always shaking. The higher the temperature, the more the atoms shake. Here, the scientists used the new HERMES instrument to measure the temperature of semiconducting hexagonal boron nitride by directly observing the atomic vibrations that correspond to heat in the material. The team included partners from Nion (developer of HERMES) and Protochips (developer of a heating chip used for the experiment).

"What is most important about this 'thermometer' that we have developed is that temperature calibration is not needed," said physicist Juan Carlos Idrobo of the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at ORNL.

Other thermometers require prior calibration. To make temperature graduation marks on a mercury thermometer, for example, the manufacturer needs to know how much mercury expands as the temperature rises.

"ORNL's HERMES instead gives a direct measurement of temperature at the nanoscale," said Andrew Lupini of ORNL's Materials Science and Technology Division. The experimenter needs only to know the energy and intensity of an atomic vibration in a material--both of which are measured during the experiment.

These two features are depicted as peaks, which are used to calculate a ratio between energy gain and energy loss. "From this we get a temperature," Lupini explained. "We don't need to know anything about the material beforehand to measure temperature."

In 1966, also in Physical Review Letters, H. Boersch, J. Geiger and W. Stickel published a demonstration of electron energy gain spectroscopy, at a larger length scale, and pointed out that the measurement should depend upon the temperature of the sample. Based on that suggestion, the ORNL team hypothesized that it should be possible to measure a nanomaterial's temperature using an electron microscope with an electron beam that is "monochromated" or filtered to select energies within a narrow range.

To perform electron energy gain and loss spectroscopy experiments, scientists place a sample material in the electron microscope. The microscope's electron beam goes through the sample, with the majority of electrons barely interacting with the sample. In electron energy loss spectroscopy, the beam loses energy as it passes through the sample, whereas in energy gain spectroscopy, the electrons gain energy from interacting with the sample.

"The new HERMES lets us look at very tiny energy losses and even very small amounts of energy gain by the sample, which are even harder to observe because they are less likely to happen," Idrobo said. "The key to our experiment is that statistical physical principles tell us that it is more likely to observe energy gain when the sample is heated. That is precisely what allowed us to measure the temperature of the boron nitride. The monochromated electron microscope enables this from nanoscale volumes. The ability to probe such exquisite physical phenomena at these tiny scales is why ORNL purchased the HERMES."

ORNL scientists are constantly pushing the capabilities of electron microscopes to allow new ways of conducting forefront research. When Nion electron microscope developer Ondrej Krivanek asked Idrobo and Lupini, "Wouldn't it be fun to try electron energy gain spectroscopy?" they jumped at the chance to be the first to explore this capability of their HERMES instrument.

Nanoscale resolution makes it possible to characterize the local temperature during phase transitions in materials--an impossibility with techniques that do not have the spatial resolution of HERMES spectroscopy. For example, an infrared camera is limited by the wavelength of infrared light to much larger objects.

Whereas in this experiment the scientists tested nanoscale environments at room temperature to about 1300 degrees Celsius (2372 degrees Fahrenheit), the HERMES could be useful for studying devices working across a wide range of temperatures, for example, electronics that operate under ambient conditions to vehicle catalysts that perform over 300 C/600 F.

###

The title of the paper is "Temperature Measurement by a Nanoscale Electron Probe Using Energy Gain and Loss Spectroscopy."

Funding came from the Department of Energy Office of Science.

UT-Battelle manages ORNL for DOE's Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Media Contact

Dawn Levy
levyd@ornl.gov
865-576-6448

 @ORNL

http://www.ornl.gov 

Dawn Levy | EurekAlert!

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>