Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop spectroscopic thermometer for nanomaterials

15.03.2018

A scientific team led by the Department of Energy's Oak Ridge National Laboratory has found a new way to take the local temperature of a material from an area about a billionth of a meter wide, or approximately 100,000 times thinner than a human hair.

This discovery, published in Physical Review Letters, promises to improve the understanding of useful yet unusual physical and chemical behaviors that arise in materials and structures at the nanoscale. The ability to take nanoscale temperatures could help advance microelectronic devices, semiconducting materials and other technologies, whose development depends on mapping the atomic-scale vibrations due to heat.


From left, Andrew Lupini and Juan Carlos Idrobo use ORNL's new monochromated, aberration-corrected scanning transmission electron microscope, a Nion HERMES to take the temperatures of materials at the nanoscale.

Credit: Oak Ridge National Laboratory, US Dept. of Energy; photographer Jason Richards

The study used a technique called electron energy gain spectroscopy in a newly purchased, specialized instrument that produces images with both high spatial resolution and great spectral detail. The 13-foot-tall instrument, made by Nion Co., is named HERMES, short for High Energy Resolution Monochromated Electron energy-loss spectroscopy-Scanning transmission electron microscope.

Atoms are always shaking. The higher the temperature, the more the atoms shake. Here, the scientists used the new HERMES instrument to measure the temperature of semiconducting hexagonal boron nitride by directly observing the atomic vibrations that correspond to heat in the material. The team included partners from Nion (developer of HERMES) and Protochips (developer of a heating chip used for the experiment).

"What is most important about this 'thermometer' that we have developed is that temperature calibration is not needed," said physicist Juan Carlos Idrobo of the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at ORNL.

Other thermometers require prior calibration. To make temperature graduation marks on a mercury thermometer, for example, the manufacturer needs to know how much mercury expands as the temperature rises.

"ORNL's HERMES instead gives a direct measurement of temperature at the nanoscale," said Andrew Lupini of ORNL's Materials Science and Technology Division. The experimenter needs only to know the energy and intensity of an atomic vibration in a material--both of which are measured during the experiment.

These two features are depicted as peaks, which are used to calculate a ratio between energy gain and energy loss. "From this we get a temperature," Lupini explained. "We don't need to know anything about the material beforehand to measure temperature."

In 1966, also in Physical Review Letters, H. Boersch, J. Geiger and W. Stickel published a demonstration of electron energy gain spectroscopy, at a larger length scale, and pointed out that the measurement should depend upon the temperature of the sample. Based on that suggestion, the ORNL team hypothesized that it should be possible to measure a nanomaterial's temperature using an electron microscope with an electron beam that is "monochromated" or filtered to select energies within a narrow range.

To perform electron energy gain and loss spectroscopy experiments, scientists place a sample material in the electron microscope. The microscope's electron beam goes through the sample, with the majority of electrons barely interacting with the sample. In electron energy loss spectroscopy, the beam loses energy as it passes through the sample, whereas in energy gain spectroscopy, the electrons gain energy from interacting with the sample.

"The new HERMES lets us look at very tiny energy losses and even very small amounts of energy gain by the sample, which are even harder to observe because they are less likely to happen," Idrobo said. "The key to our experiment is that statistical physical principles tell us that it is more likely to observe energy gain when the sample is heated. That is precisely what allowed us to measure the temperature of the boron nitride. The monochromated electron microscope enables this from nanoscale volumes. The ability to probe such exquisite physical phenomena at these tiny scales is why ORNL purchased the HERMES."

ORNL scientists are constantly pushing the capabilities of electron microscopes to allow new ways of conducting forefront research. When Nion electron microscope developer Ondrej Krivanek asked Idrobo and Lupini, "Wouldn't it be fun to try electron energy gain spectroscopy?" they jumped at the chance to be the first to explore this capability of their HERMES instrument.

Nanoscale resolution makes it possible to characterize the local temperature during phase transitions in materials--an impossibility with techniques that do not have the spatial resolution of HERMES spectroscopy. For example, an infrared camera is limited by the wavelength of infrared light to much larger objects.

Whereas in this experiment the scientists tested nanoscale environments at room temperature to about 1300 degrees Celsius (2372 degrees Fahrenheit), the HERMES could be useful for studying devices working across a wide range of temperatures, for example, electronics that operate under ambient conditions to vehicle catalysts that perform over 300 C/600 F.

###

The title of the paper is "Temperature Measurement by a Nanoscale Electron Probe Using Energy Gain and Loss Spectroscopy."

Funding came from the Department of Energy Office of Science.

UT-Battelle manages ORNL for DOE's Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Media Contact

Dawn Levy
levyd@ornl.gov
865-576-6448

 @ORNL

http://www.ornl.gov 

Dawn Levy | EurekAlert!

More articles from Materials Sciences:

nachricht Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard
13.11.2019 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut (WKI)

nachricht New Pitt research finds carbon nanotubes show a love/hate relationship with water
13.11.2019 | University of Pittsburgh

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnets for the second dimension

12.11.2019 | Machine Engineering

New efficiency world record for organic solar modules

12.11.2019 | Power and Electrical Engineering

Non-volatile control of magnetic anisotropy through change of electric polarization

12.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>