Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research paves way for new composite materials

20.07.2006
Northwestern University researchers have developed a process that promises to lead to the creation of a new class of composite materials -- "graphene-based materials."

The method uses graphite to produce individual graphene-based sheets with exceptional physical, chemical and barrier properties that could be mixed into materials such as polymers, glasses and ceramics.

The Northwestern team, led by materials scientist and physical chemist Rod Ruoff and composed of chemists, physicists and engineers, reports the results of their research in the July 20 issue of the journal Nature.

"This research provides a basis for developing a new class of composite materials for many applications, through tuning of their electrical and thermal conductivity, their mechanical stiffness, toughness and strength, and their permeability to flow various gases through them," said Ruoff, professor of mechanical engineering in the McCormick School of Engineering and Applied Science. "We believe that manipulating the chemical and physical properties of individual graphene-based sheets and effectively mixing them into other materials will lead to discoveries of new materials in the future."

The Northwestern team's approach to its challenge was based on chemically treating and thereby "exfoliating" graphite to individual layers. Graphite is a layered material of carbon with strong chemical bonds in the layers but with moderately weak bonds between the layers. The properties of the individual layers have been expected to be exceptional because the "in-plane" properties of graphite itself are exceptional, but until now it was not possible to extract such individual layers and to embed them as a filler material in materials such as polymers, and particularly not by a scalable route that could afford large quantities.

There are approximately one million metric tons of graphite sold annually around the world, and there are roughly 800 million metric tons of untapped natural graphite that could be mined and used in the future, according to the U.S. Geological Survey. Graphite is used in a wide variety of applications such as those related to friction (brake linings are one example), in gaskets, as a lubricant, and as an electrode material in the making of steel.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>