Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Conveyor Belt for the Nano-Age

29.04.2004


In a development that brings the promise of mass production to nanoscale devices, Lawrence Berkeley National Laboratory scientists have transformed carbon nanotubes into conveyor belts capable of ferrying atom-sized particles to microscopic worksites.


Someday, nanoscale conveyor belts could expedite the atom-by-atom construction of the world’s smallest devices (courtesy of Zettl Research Group).



By applying a small electrical current to a carbon nanotube, they moved indium particles along the tube like auto parts on an assembly line. Their research, described in the April 29 issue of Nature, lays the groundwork for the high-throughput construction of atomic-scale optical, electronic, and mechanical devices that will power the burgeoning field of nanotechnology.

“We’re not transporting atoms one at a time anymore — it’s more like a hose,” says Chris Regan of Berkeley Lab’s Materials Sciences Division, who co-authored the article along with fellow Materials Sciences researchers Shaul Aloni, Ulrich Dahmen, Robert Ritchie, and Alex Zettl. Aloni, Regan, and Zettl are also scientists in the University of California at Berkeley’s Department of Physics, where much of the work was conducted.


The ability to shuttle a stream of particles to precise locations fills a void that has stymied the efficient assembly of nanostructures. For years, scientists have been able to simultaneously deliver millions of atoms to millions of sites simply by mixing chemicals. Although this fast technique has grown quite sophisticated, it remains far too blunt to build atomic-scale devices. On the other end of the spectrum is the ability to manipulate individual atoms, a feat that came of age in 1990 when IBM researchers spelled out the company logo by positioning 35 xenon atoms with a scanning tunneling microscope. Although precise, this technique is painstakingly slow, with no way to swiftly deliver atoms to the work area.

“It’s either all at once, or excruciatingly serial,” says Regan. “So we combined incredibly precise localization with something that has higher throughput.”

This middle ground is made possible by carbon nanotubes, which are hollow cylinders of pure carbon about ten thousand times smaller than the diameter of a human hair. Since their discovery in the sooty residue of vaporized carbon rods, these incredibly strong and versatile macromolecules have been engineered into frictionless bearings, telescoping rods, and the world’s smallest room-temperature diodes. Now, they’re poised to change the way these and other devices are constructed.

As described in their Nature article, the research team thermally evaporated indium metal onto a bundle of carbon nanotubes. The amount of evaporated metal is so small it populates the tubes’ surfaces as isolated indium crystals, instead of uniformly coating them. The bundle is then placed inside a transmission electron microscope, where a tungsten tip mounted on the end of a nanomanipulator approaches one nanotube. After physical contact is made between the tip and the free end of the nanotube, voltage is applied between the tip and the other end of the nanotube, creating a circuit. This sends an electrical current through the nanotube, which generates thermal energy that heats the indium particles.

Next, if the voltage and thermal energy is carefully controlled, something strange occurs. Real-time video of the nanotube’s surface captures an indium particle as it disappears, while the particle to its right grows. Several seconds later, that newly enlarged particle also disappears, replaced by another even further to the right. Like squeezing the last bits of toothpaste from a tube, particles to the left become smaller while those to the right grow.

In this manner, the thermally driven indium atoms inchworm along the nanotube, momentarily occupying a reservoir where a particle is located, and then moving to the next, until all of the indium piles up at the end of the nanotube. In the future, this nano-sized conveyor belt could be aimed anywhere scientists want to deliver mass atom-by-atom — the makings of a formidable nanoassembly tool. Moreover, if the voltage is slightly increased, the indium’s temperature increases, and the metal moves from left to right more quickly.

“It’s the equivalent of turning a knob with my hand and taking macroscale control of nanoscale mass transport,” Regan says. “And it’s reversible: we can change the current’s polarity and drive the indium back to its original position.”

In other words, indium can be repeatedly moved back and forth along the nanotube without losing a single atom. Nothing is lost in transit. This conservation of mass occurs because the atoms don’t evaporate from the system during their journey — an advantage in any process meant to deliver valuable material to a worksite. Instead, the atoms hug the nanotube’s surface as they move, tethered by a process called surface diffusion.

“In order to build a structure we have to be able transport material to the construction site, and we’re developing a better way to do that,” Regan says. “Our nanoscale mass delivery system is simple and reversible. It requires only a nanotube, a voltage source, and something to transport.”

"Carbon Nanotubes as Nanoscale Mass Conveyors," by Chris Regan, Shaul Aloni, Robert Ritchie, Ulrich Dahmen, and Alex Zettl, appears in the April 29, 2004 issue of Nature.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Dan Krotz | LBNL
Further information:
http://www.lbl.gov/Science-Articles/Archive/MSD-conveyor-belt-for-nanoage.html

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>