Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic cracks spoil the transparency of glass, nano-researchers find

13.10.2003


The cloudy look on cleaned glass is scattered light, not streaks of dirt



A fundamental discovery about the behavior of cooling glass could have a significant impact on the glass- and plastic-making industries, say researchers at Lehigh University.
Himanshu Jain, Diamond chair and professor of materials science and engineering at Lehigh, says the breakthrough was made possible by a combination of nanoscopic science and an old-fashioned kitchen recipe.

When molten glass is blown rapidly to make articles of desired shape, Jain’s group found, its outermost surface, measuring a few nanometers in thickness, sustains microscopic fractures when it comes into contact with air. One nanometer equals one one-billionth of a meter.



These fractures are microns or nanometers in width and thus too small to be seen with the unaided eye, says Jain. But when they are exposed to an aggressive solution, such as a dishwashing soap, the cracks etch out, spread and begin to dissolve faster than the rest of the glass, leaving behind a dirty look that can not be cleaned away.

In reality, says Jain, the dirty look is merely light that is scattered by the numerous microscopic cracks.

Jain’s group described their findings in an article titled "Inhomogeneous evolution of a glass surface via free, rapid expansion" in the Oct. 6, 2003, issue of Applied Physics Letters.

Previously, says Jain, scientists and glass-makers had assumed that under force molten glass expanded in a uniform manner and that finished glass was a chemically durable, homogeneous material.

Jain has spent more than two decades studying the unorganized arrangements and unpredictable movements of atoms in glass’s non-crystalline structure.

Several years ago, he was asked by Unilever to figure out why, after being washed in a dishwasher, some wineglasses acquire a lined, milky look that can not be removed by further cleanings.

To solve the puzzle, Jain, his graduate student Anju Sharma, and Unilever collaborator Joseph O. Carnali, turned the prevailing assumptions about the properties of glass on their head and hypothesized that the surface of molten glass was solid and thus prone to cracking.

"We had to come up with a hypothesis because, using the traditional assumption that the surface was behaving like a liquid, we could not understand everything about the corrosion of the glass," he said.

With help from his 12-year-old daughter, Isha, Jain designed a home experiment to test his hypothesis.

The Jains started their experiment with a cooking pot. Using an Internet recipe for making hard candy, known by scientists as sucrose glass, they boiled a mixture of water and sugar, which mimics the molecular behavior of the soda and silica that are the main ingredients of commercial glassware.

When the hot syrup reached the consistency of viscous glass, Jain and his daughter used an empty ballpoint pen to simulate the blowing of glass.

When they studied the microstructure of the sucrose glass surface in detail, the Jains found tiny cracks, indicating that the surface had expanded not in a uniform fashion, like a liquid would, but in a non-uniform manner, as a solid would.

Encouraged by this initial observation, the Lehigh researchers conducted more sophisticated experiments in laboratory, blowing real glass and characterizing its expanding surface with electron microscopy.

"No one had imagined that the top nanometer or two of the surface was a solid," Jain said. "Our lab experiments had proved our hypothesis. Only the top of the surface fractured; the rest of the glass remained very homogeneous."

One factor contributing to the formation of the tiny cracks on the nano-surface, says Jain, is the fact that there is a very high temperature gradient at the glass surface.

Jain conducted his experiments using sucrose glass and real glass, but he believes plastics will behave similarly, although to a lesser degree, as plastic products are formed at lower temperatures.

"This is a quality-control issue for manufacturers," he said. "For nano-researchers, the lack of homogeneity on the nano-scale could be a serious problem that would need to be resolved as nanotechnology enters the market place."

A second paper by Jain and his colleagues, which describes the effect of manufacturing-induced corrosion on wineglasses and other commercial glassware, is scheduled to be published next week by the Journal of the American Ceramics Society.

Kurt Pfitzer | EurekAlert!

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>