Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthesis of cage-like silica structure easier and cheaper

16.09.2003


A tailored, cage-like silica structure, developed by Penn State researchers, is easier and less expensive to make than previous materials and is tunable in size.



"Previous attempts at synthesizing materials like PSU-1 involved specially designed templates making the process expensive," says Dr. Sridhar Komarneni, professor of clay mineralogy. "The processes also require stringent conditions for the synthesis to work." Komarneni, working with Dr. Bharat L. Newalkar, postdoctoral fellow in Penn State’s Materials Research Institute; Uday T. Turaga, graduate student in the fuel science program and geoenvironmental engineering; and Dr. Hiroaki Katsuki of Saga Ceramics Research Laboratory, Japan, used a hybrid mechanism to synthesize the same product.

"We believe that this approach has the potential to result in new synthetic strategies for tailoring new framework compositions for specific applications in the fields of catalysis, adsorption, and nanotechnology," the researchers reported at the recent American Chemical Society annual meeting in New York and in the Journal of Materials Chemistry.


Silica materials similar to PSU-1 exist and are small particles with nanoscopic pores. Some have hexagonal, close-packed pores. Others are cubic with three-dimensional linkages. These tailored materials, which appear powder like, are usually created by producing a template in the shape of the required pore. The silica forms around the template, which is then removed either with organic solvents or by heating until the template material calcines.

PSU-1 has a more complex pore structure than cubic or hexagonal. The pore, referred to as a cage, has a central large hollow area with smaller tubes connecting the central pore spaces. Manufacturing a template to create this structure is possible, but expensive and time-consuming.

"We prepared two gels and two templates and mixed them together to see what kind of material might come up with this hybrid template," says Komarneni. "We were surprised to get a really new structure, not like the two starting structures."

The two sets of templates and gels mixed together – one forms large pores and one forms small pores – created the cage-like structure. Altering the size of the templates alters the sizes of the pores, which have sizes of 4.6 and 5.4 nanometers, while the powders are 30 to 40 micrometers in diameter.

The researchers add another twist by using microwaves to synthesize the material in liquid. Microwaving takes a much shorter time than conventional heating techniques, creates a more stable material and the 30 to 40 micrometer particles are much bigger than the previously produced 1 to 2 micrometer particles.

"We can tell it is a cage with passageway structure because very small molecules will block the flow through the particles and that will not happen in the hexagonally arranged pores of a silica particle," says Komarneni. "What we do not know is how many tubes branch off from each central cage."


###
The National Science Foundation-supported Penn State Materials Research Science and Engineering Center supported this work.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Materials Sciences:

nachricht Large-scale window material developed for PM2.5 capture and light tuning
18.02.2019 | University of Science and Technology of China

nachricht Engineered metasurfaces reflect waves in unusual directions
18.02.2019 | Aalto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>