Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How black is ‘Super Black’?

28.05.2003


Scientists at the National Physical Laboratory (NPL), Teddington, Middlesex, UK have good news for manufacturers and users across the optical instrumentation industry. Based on existing processes developed in the US and Japan, a team of researchers at NPL has developed a new technique for commercial manufacturing of ultra-black coatings, which represent one of the blackest, lowest reflectance surfaces developed so far.



Performance of optical instrumentation depends on the quality of materials used in their manufacture. For the accuracy of measurement in the ultra-violet, infra-red and visible regions, optimal radiation detection and minimisation of stray light is crucial.

By studying the effect of different methods of chemical etching on various compositions of nickel-phosphorous alloys, researchers have come up with the most effective commercially available black coating to date. With reflectance as low as 0.35% in the visible region, the coating, known as NPL Super Black or Ni-P black – as it is based on a nickel -phosphorous compound – is set to have a major impact in fields such as radiometry, spectroscopy, optical metrology, and within the aerospace and defence industries.


NPL Super Black has been produced on a small scale at the National Physical Laboratory in the UK for a number of years. Its efficiency in detecting radiation, and reducing stray light in instruments is well known. Until recently however, the process has not been fully understood, and a growing demand for more efficient low reflectance surfaces prompted NPL to conduct the first in-depth research of its kind.

Dr Richard Brown, Senior Research Scientist at NPL, says, “The results are very exciting. The improved understanding of the process means that NPL Super Black will be available to a wider range of users across many areas of science and technology, and its benefits are enormous. One of the advantages of this new black is that it can withstand cryogenic temperatures without cracking.”

NPL’s increased understanding of the process by which the black nickel-phosphorous coating is produced will enable larger scale production of an even higher quality, more effective optical black. As well as increased quality of optical measurement, one of the greatest benefits to manufacturers and users of optical equipment will be the reduction in instrument size and weight, made possible as a result of the increased efficiency of the coating.

Further good news is that the latest manufacturing process allows NPL Super Black to be produced in larger sample sizes. The largest available coated plates were formerly no bigger than 1 to 3cm2, making them too small for many applications. Now, plates can be manufactured in sizes of up to 12cm x 12cm, making them a viable alternative for a wide range of uses.

The advantages of Ni-P black over other coated surfaces are already well established. In addition to its higher absorbance, nickel-phosphorous black coatings do not age significantly compared with painted surfaces, and whereas the painted surfaces would crack at cryogenic temperatures NPL Super Black’s performance is unaffected.

This, combined with the fact that NPL Super Black has the potential to be plated onto a range of materials of different shapes and sizes, including glass and ceramics, will allow greater flexibility of instruments across a range of environmental conditions. Because of its excellent ageing properties, instrument lifespan will also be extended, making NPL ‘Super Black’ an extremely attractive and cost-effective alternative.

Noor Kheir | alfa

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>