Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Porous ceramic can sort proteins magnetically

25.03.2003


In recent years chemists and materials scientists have enthusiastically searched for ways to make materials with nanoscale pores -- channels comparable in size to organic molecules -- that could be used, among other things, to separate proteins by size. Recently Cornell University researchers developed a method to "self-assemble" such structures by using organic polymers to guide the formation of ceramic structures.


Transmission electron micrographs show, at left, the regular pattern of hexagonal channels in the ceramic material, and at right, the smooth distribution of iron oxide particles (dark spots) within the ceramic matrix.



Now they have advanced another step by incorporating tiny magnetic particles of iron oxide into the walls of porous ceramic structures in a simple "one-pot" self-assembly. Such materials could be used to separate proteins tagged with magnetic materials, or in catalytic processes.

"This enables access, for the first time, to protein-separation technology based on a combination of size exclusion with magnetically assisted separation," explains Ulrich Wiesner, professor of materials science at Cornell, in Ithaca, N.Y., lead investigator for the research. One application could be the separation of a single protein out of the thousands found in blood serum.


The new research will be described in a paper by Cornell graduate student Carlos Garcia and research associate Yuanming Zhang, Wiesner and Francis DiSalvo, Cornell professor of chemistry and director of the Cornell Center for Materials Research (CCMR), in a forthcoming issue of the authoritative German journal of chemistry, Angewandte Chemie. Wiesner will discuss this and other work on self-assembled polymer-ceramic hybrids at the 225th national meeting of the American Chemical Society in New Orleans at 1:30 p.m. CST Monday, March 24, as part of a symposium on hybrid materials.

Wiesner’s team creates porous structures by mixing organic polymers -- in particular a class known as diblock copolymers -- with silica-type ceramics. Under the right conditions the materials self-assemble into polymer channels surrounded by a polymer-ceramic composite. This is "calcined," or exposed to extreme heat to vaporize organic components, leaving a ceramic honeycombed with tiny passages. By controlling the polymer molecular weight and the relative amounts of polymer and ceramic, they control the size of the passages. In the latest work, iron ethoxide powder is added to the polymer-ceramic mix. The iron is dispersed throughout the ceramic portion of the structure.

When the material is calcined in the presence of oxygen, the iron transforms into nanoparticles of crystalline iron oxide -- in a so-called "lamda" form that has magnetic properties -- embedded in the walls of the passages. The Cornell researchers note that apparently the surrounding silica-type matrix prevents the iron oxide from converting into a more stable, non-magnetic "alpha" form under calcination.

X-ray scattering and transmission electron microscopy (TEM) verified that the initial hexagonal cylinder composite structure is preserved under calcination. Measurements with a superconducting magnetometer verified that the nanometer-sized iron oxide particles within the pore walls are superparamagnetic -- that is, their magnetic properties can be switched on and off by the application of external magnetic fields. The TEM images show the iron oxide particles to be about 5 nanometers in size (a nanometer is one billionth of a meter), a figure that agrees with theoretical predictions based on magnetometer data.

One use for these novel materials, Wiesner suggests, would be to separate proteins or other biological molecules both by size exclusion and magnetic interactions. If a magnetic field is applied to the ceramic structure, molecules tagged with magnetic material would be held back. After other molecules have passed through, the field is turned off and the selected molecule is released.

The porous materials also could be used in catalytic conversion. Iron oxide, for example, is used as a catalyst in converting carbon monoxide to carbon dioxide. In theory, Wiesner says, these materials could be made with a wide variety of metals, making other catalytic processes possible. The material is stable at temperatures up to 800 degrees Centigrade (1,472 degrees Fahrenheit), making it usable in many high-temperature catalytic processes.

Other researchers have experimented with adding magnetic particles to a porous ceramic structure after it is formed, by depositing the particles on the inner surfaces of the pores. This risks clogging the pores, Wiesner says. In the latest experiments, the iron oxide particles are embedded within the ceramic walls. The form of iron oxide created in this process is known as lamda-Fe2O3 . Non-magnetic alpha-Fe2O3 , with a different arrangement of atoms in the molecule, is usually observed after exposure to the high temperatures of calcination. The research was supported by the National Science Foundation, Phillip Morris CCMR, which is a Materials Research Science and Engineering Center of the National Science Foundation.

Bill Steele | EurekAlert!
Further information:
http://www.ccmr.cornell.edu/~uli/

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>