Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Take New Look at StrengthofIndustrial Glass Fiber

26.02.2003


Prabhat K. Gupta


An Ohio State University engineer and his colleagues have discovered something new about a 50-year-old type of fiberglass: it may be more than one and a half times stronger than previously thought.

That conclusion, and the techniques engineers used to reach it, could help expand applications for glass fibers.

Though the glass fiber industry is currently suffering the same economic woes as many other businesses, the time is right to lay the groundwork for future applications, said Prabhat K. Gupta, professor of materials science and engineering.



The half-century-old glass, called E-glass, is the most popular type of fiberglass, and is often used to reinforce plastic and other materials. In a February issue of the Journal of Non-Crystalline Solids, Gupta and his co-authors describe an improved method for measuring the strength of E-glass and other glass fibers, including those used in fiber-optic communications.

The method would be relatively easy to implement in industry, and involves holding a glass fiber at low temperatures and bending it until it breaks. The key, Gupta said, is assuring that a sample is completely free of flaws before the test.

Gupta isn’t surprised that nobody definitively measured the strength of fiberglass before now. “Industries develop materials quickly for specific applications,” he said. “Later, there is time for basic research to further improve a material.”

E-glass was created in the 1950s to insulate electronics. Today, it’s used to strengthen plastics for everything from bathtubs to car door panels. Other types of fiberglass are used to make heat-resistant cloth, rope, and home insulation.

To improve a particular formulation of glass and devise new applications for it, researchers need to know how strong it is under ideal conditions. So Gupta and his colleagues -- Charles Kurkjian, formerly of AT&T Bell Labs and now a visiting professor of ceramic and materials engineering at Rutgers University; Richard Brow, professor and chair of ceramic engineering at University of Missouri-Rolla; and Nathan Lower, masters student at University of Missouri-Rolla -- had to determine the ideal conditions for the material.

In their latest work, the engineers outlined a set of procedures that researchers in industry and academia can follow to assure that they are measuring the ideal strength of a glass fiber.

For instance, if small-diameter versions of the fiber seem stronger than larger diameter versions, then the glass most likely contains flaws. That’s because the ideal strength depends on inherent qualities of the glass, not the diameter of the fiber, Gupta said.

To measure the ideal strength of E-glass, he and his coauthors experimented on fibers that were 100 micrometers thick -- about the same thickness as a human hair -- held at minus 320F (minus 195C). They bent single fibers into a “U” shape and pressed them between two metal plates until the fibers snapped at the fold.

The fibers withstood a pressure of almost 1.5 million pounds per square inch -- roughly 1.7 times higher than previous recorded measurements of 870,000 pounds per square inch. The results suggest that the engineers were able to measure the material’s true strength.

Knowing more about the strength of fibers can help manufacturers improve production. The process is the same now as when Gupta was a senior scientist at Owens-Corning Fiberglas Corp. in Granville, Ohio, in the 1980s: glass melts in a giant crucible with thousands of holes in the bottom. When the molten glass flows down through the holes, it is stretched to form long fibers, a procedure Gupta likens to “pulling strings from honey.”

If even a single strand of glass breaks, it can whip around and shatter the other fibers, he said. Production grinds to a halt while workers clean up the mess and start over.

Strength is an issue for optical fiber as much as E-glass and other reinforcement fibers. “Even if you’re interested in a glass for its optical properties, you still have to be able to handle the glass and know how long it will last,” Gupta said.

Given the telecommunications industry’s current slump, however, Gupta doubts that optical fiber makers will be looking to dramatically improve the strength of their product.

“Even very high quality optical fiber is dirt cheap today,” he said. “A more likely application is in the auto industry, where reinforced plastics could replace metal parts and make cars lighter and more fuel efficient.”

Gupta and his colleagues next hope to study the atomic level structure of glass and learn more about what contributes to strength at that level.


Contact: Prabhat Gupta, (614) 292-6769; Gupta.3@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://www.osu.edu/researchnews/archive/strnglas.htm
http://www.mse.eng.ohio-state.edu/%7Egupta/

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>