Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering researchers demystify fatigue failure in polysilicon used in MEMS devices

11.11.2002


The success of many advanced technologies that use devices such as sensors and actuators, including gyroscopes and optical devices, depends on microscopic components called microelectromechanical systems (MEMS) devices made of polycrystalline silicon (polysilicon). Researchers at Case Western Reserve University report in the November 8 issue of Science that miniature micron-sized polysilicon laboratory specimens subjected to cyclic tension/compression loading undergo fatigue, and could ultimately fail as a result of damage produced by the compressive cycles, rather than from moisture-assisted stress corrosion cracking. This information, they say, could assist MEMS developers to mitigate fatigue failure in MEMS devices that experience significant mechanical stress during operation.

The Science article ("Fatigue Failure in Polysilicon: It’s Not Due to Simple Stress Corrosion Cracking") was written by Harold Kahn, Research Associate Professor in the department of materials science and engineering; Roberto Ballarini, Professor in the department of civil engineering and a lead researcher on the project; Arthur Heuer, University Professor and Kyocera Professor of Ceramics in the department of materials science and engineering; and Justin Bellante, a recent BS/MS graduate of materials science and engineering.

Polysilicon, CWRU researchers say, is a manufactured thin film consisting of silicon crystallites that is made in a microfabrication laboratory using chemical vapor deposition. The films are associated with rough surfaces that result from the plasma etching used in the final stages of MEMS processing. The researchers speculate that under compressive loading, these surfaces come into contact, and their wedging action produces microcracks that grow during subsequent tension and compression cycles.



"Over the past few years there has been a debate about the roles that moisture and mechanical stress play in the fatigue failure of polysilicon devices," said Ballarini. "Some research groups claim that polysilicon fatigue is associated with stress corrosion cracking. This failure mechanism is associated with the propagation of a sharp crack under an applied stress too low for immediate catastrophic failure and in the presence of a corrosive environment like humid air. Our research shows that polysilicon under constant stress is not susceptible to stress corrosion, but the fatigue strength is strongly influenced by the ratio of compression to tension stresses experienced during each cycle. The failure originates from microcracks and those cracks likely originate on the surface of the polysilicon."

Polysilicon MEMS structures, Heuer explained, contain many raised areas along their surfaces that act as stress concentrators and could result in microcracks when exposed to tensile or compressive stresses. "The microcracks then extend from the surface into the miniaturized structures, weakening the material and causing failure," he said.

To study the fatigue of polysilicon, Kahn and Bellante used on-chip test structures that rely on electrostatic actuation (the attraction to each other of two plates of opposite electrical charge), rather than an external testing machine.

"By using both DC and AC voltage sources," Kahn said, "we varied the ratio of compressive to tensile stresses in the cycle, and by using high frequencies, we could subject specimens to more than a billion cycles in less than a day."

"MEMS, the use of miniaturized devices for high tech products, is becoming more and more popular in modern technology," said Heuer. "This research tells us to be mindful of the manner in which we create the surfaces of polysilicon chips so that devices that experience significant mechanical stresses like gyroscopes and optical devices can be rendered less susceptible to fatigue failure."

Marci E. Hersh | EurekAlert!
Further information:
http://www.cwru.edu/

More articles from Materials Sciences:

nachricht Topological material switched off and on for the first time
11.12.2018 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

nachricht Proteins imaged in graphene liquid cell have higher radiation tolerance
10.12.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>