Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwave Synthesis Connects with the (Quantum) Dots

13.06.2008
Materials researchers at the National Institute of Standards and Technology (NIST) have developed a simplified, low-cost process for producing high-quality, water-soluble “quantum dots” for biological research.

By using a laboratory microwave reactor to promote the synthesis of the widely used nanomaterials, the recently published* NIST process avoids a problematic step in the conventional approach to making quantum dots, resulting in brighter, more stable dots.

Quantum dots are specially engineered nanoscale crystals of semiconductor compounds. The name comes from the fact that their infinitesimal size enables a quantum electronics effect that causes the crystals to fluoresce brilliantly at specific, sharply defined colors.

Bright, stable, tiny and tunable across a broad spectrum of colors, quantum dots that are engineered to attach themselves to particular proteins have become a popular research tool in areas such as cancer research for detecting, labeling and tracking specific biomarkers and cells.

Making good quantum dots for biological research is complex. First a semiconductor compound—typically a mixture of cadmium and selenium—must be induced to crystallize into discrete nanocrystals of just the right size. Cadmium is toxic, and the compound also can oxidize easily (ruining the effect), so the nanocrystals must be encapsulated in a protective shell such as zinc sulfide. To make them water soluble for biological applications, a short organic molecule called a “ligand” is attached to the zinc atoms. The organic ligand also serves as a tether to attach additional functional molecules that cause the dot to bind to specific proteins.

The accepted commercial method uses a high-temperature reaction (about 300 degrees Celsius) that must be carefully controlled under an inert gas atmosphere for the crystallization and encapsulation stages. An intermediate ligand material that can tolerate the high temperature is used to promote the crystallization process, but it must be chemically swapped afterwards for a different compound that makes the material water soluble. The ligand exchange step—as well as several variations on the process—is known to significantly alter the luminescence and stability of the resulting quantum dots.

Seeking a better method, NIST researchers turned to microwave-assisted chemistry. Microwaves have been employed in a variety of chemical reactions to reduce the required times and temperatures. Working at temperatures half those of commercial processes, the group developed a relatively simple two-stage process that requires no special atmospheric conditions and directly incorporates the water-soluble ligand into the shell without an exchange step. Using commercially available starting materials, they have synthesized highly uniform and efficient quantum dots for a range of frequencies and shown them to be stable in aqueous solutions for longer than four months.

* M.D. Roy, A.A. Herzing, S.H. De Paoli Lacerda and M,L. Becker. Emission-tunable microwave synthesis of highly luminescent water soluble CdSe/ZnS quantum dots. Chemical Communications, 2008, 2106-2108.

Michael Baum | newswise
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>