Microwave Synthesis Connects with the (Quantum) Dots

By using a laboratory microwave reactor to promote the synthesis of the widely used nanomaterials, the recently published* NIST process avoids a problematic step in the conventional approach to making quantum dots, resulting in brighter, more stable dots.

Quantum dots are specially engineered nanoscale crystals of semiconductor compounds. The name comes from the fact that their infinitesimal size enables a quantum electronics effect that causes the crystals to fluoresce brilliantly at specific, sharply defined colors.

Bright, stable, tiny and tunable across a broad spectrum of colors, quantum dots that are engineered to attach themselves to particular proteins have become a popular research tool in areas such as cancer research for detecting, labeling and tracking specific biomarkers and cells.

Making good quantum dots for biological research is complex. First a semiconductor compound—typically a mixture of cadmium and selenium—must be induced to crystallize into discrete nanocrystals of just the right size. Cadmium is toxic, and the compound also can oxidize easily (ruining the effect), so the nanocrystals must be encapsulated in a protective shell such as zinc sulfide. To make them water soluble for biological applications, a short organic molecule called a “ligand” is attached to the zinc atoms. The organic ligand also serves as a tether to attach additional functional molecules that cause the dot to bind to specific proteins.

The accepted commercial method uses a high-temperature reaction (about 300 degrees Celsius) that must be carefully controlled under an inert gas atmosphere for the crystallization and encapsulation stages. An intermediate ligand material that can tolerate the high temperature is used to promote the crystallization process, but it must be chemically swapped afterwards for a different compound that makes the material water soluble. The ligand exchange step—as well as several variations on the process—is known to significantly alter the luminescence and stability of the resulting quantum dots.

Seeking a better method, NIST researchers turned to microwave-assisted chemistry. Microwaves have been employed in a variety of chemical reactions to reduce the required times and temperatures. Working at temperatures half those of commercial processes, the group developed a relatively simple two-stage process that requires no special atmospheric conditions and directly incorporates the water-soluble ligand into the shell without an exchange step. Using commercially available starting materials, they have synthesized highly uniform and efficient quantum dots for a range of frequencies and shown them to be stable in aqueous solutions for longer than four months.

* M.D. Roy, A.A. Herzing, S.H. De Paoli Lacerda and M,L. Becker. Emission-tunable microwave synthesis of highly luminescent water soluble CdSe/ZnS quantum dots. Chemical Communications, 2008, 2106-2108.

Media Contact

Michael Baum newswise

More Information:

http://www.nist.gov

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors