Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record-breaking material that contracts when heated

08.02.2017

Researchers based at Nagoya University discover ceramic material that contracts on heating by more than twice the previous record-holding material

Machines and devices used in modern industry are required to withstand harsh conditions. When the environmental temperature changes, the volume of the materials used to make these devices usually changes slightly, typically by less than 0.01%. Although this may seem like a trivial change, over time this thermal expansion can seriously degrade the performance of industrial systems and equipment.


A layered ruthenate Ca2RuO4-y ceramic body contracts on heating, or exhibits negative thermal expansion (NTE). The sintered-body structure shows colossal NTE when extremely anisotropic thermal expansion of the crystal grains produces deformation, consuming open spaces (voids) on heating. The total volume change related to NTE reaches 6.7 percent at most, the largest reported so far.

Credit: Koshi Takenaka

Materials that contract on heating, or negative thermal expansion materials, are therefore of great interest to industrial engineers. These materials can be mixed with normal materials, which expand on heating, with the final aim of producing a composite material with its thermal expansion adjusted to a particular value, typically zero, and maintained even at the extremely low operating temperatures used in cryogenic and aerospace engineering.

In a new study published in Nature Communications, Nagoya University-led researchers report a reduced ruthenate ceramic material, made up of calcium, ruthenium and oxygen atoms, that shrinks by a record-breaking 6.7% when heated.

This is more than double the current record for a negative thermal expansion material, and the bulk material expands again when it is cooled. The results may provide industrial engineers with a new class of composite materials that can be used to increase the accuracy of processes and measurements, to improve the stability of device performance, and to prolong device lifetimes.

The size of the volume change, as well as the operating temperatures for negative thermal expansion can be controlled by changing the composition of the material. When the ruthenium atoms are partially replaced by iron atoms, the temperature window for negative thermal expansion gets much larger. This window extends to above 200 °C for the iron-containing material, which makes it particularly promising for industrial use.

Noting that the volume changes were triggered at the same temperature that the reduced ruthenate material changed from a metallic to a non-metallic state, the researchers looked at changes in the arrangement of the atoms using X-ray techniques. They saw dramatic changes on heating, with the internal atomic structure expanding in some directions but contracting in others.

Although the internal structure showed a net contraction, the crystallographic changes were not big enough to explain the giant volume changes in the bulk material. Instead, the researchers turned their attention to the material's overall structure, and found empty voids around the ceramic grains.

"The non-uniform changes in the atomic structure seem to deform the microstructure of the material, which means that the voids collapse and the material shrinks," study corresponding author Koshi Takenaka says. "This is a new way of achieving negative thermal expansion, and it will allow us to develop new materials to compensate for thermal expansion."

###

Their article, "Colossal negative thermal expansion in reduced layered ruthenate" was published in Nature Communications at DOI: 10.1038/ncomms14102

Koomi Sung | EurekAlert!

More articles from Materials Sciences:

nachricht Capturing 3D microstructures in real time
03.04.2020 | DOE/Argonne National Laboratory

nachricht Graphene-based actuator swarm enables programmable deformation
02.04.2020 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>