Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential carbon capture role for new CO2 absorbing material

13.06.2012
A novel porous material that has unique carbon dioxide retention properties has been developed through research led by The University of Nottingham.

The findings, published in the prestigious peer-reviewed journal Nature Materials, form part of ongoing efforts to develop new materials for gas storage applications and could have an impact in the advancement of new carbon capture products for reducing emissions from fossil fuel processes.

It focuses on the metal organic framework NOTT-202a, which has a unique honeycomb-like structural arrangement and can be considered to represent an entirely new class of porous material.

Most importantly, the material structure allows selective adsorption of carbon dioxide — while other gases such as nitrogen, methane and hydrogen can pass back through, the carbon dioxide remains trapped in the materials nanopores, even at low temperatures.

Unique material

Lead researcher Professor Martin Schröder, in the University’s School of Chemistry, said: “The unique defect structure that this new material shows can be correlated directly to its gas adsorption properties. Detailed analyses via structure determination and computational modelling have been critical in determining and rationalising the structure and function of this material.”

The research team — which is included Dr Sihai Yang, Professor Alexander Blake, Professor Neil Champness and Dr Elena Bichoutskaia at Nottingham — collaborated on the project with colleagues at the University of Newcastle and Diamond Light Source and STFC Daresbury Laboratory.

NOTT-202a consists of a tetra-carboxylate ligands — a honeycomb like structure made of a series of molecules or ions bound to a central metal atom — and filled with indium metal centres. This forms a novel structure consisting of two interlocked frameworks.

Innovative solutions

State-of-the-art X-ray powder diffraction measurements at Diamond Light Source and advanced computer modelling were used to probe and gain insight into the unique carbon dioxide capturing properties of the material.

The study has been funded by the ERC Advanced Grant COORDSPACE and by an EPSRC Programme Grant ChemEnSus aimed at applying coordination chemistry to the generation of new multi-functional porous materials that could provide innovative solutions for key issues around environmental and chemical sustainability.

These projects incorporate multi-disciplinary collaborations across chemistry, physics and materials science, and aim to develop new materials that could have application in gas storage, sieving and purification, carbon capture, chemical reactivity and sensing.

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Materials Sciences:

nachricht Tiny quantum sensors watch materials transform under pressure
13.12.2019 | DOE/Lawrence Berkeley National Laboratory

nachricht Light, strong, and tough: Researchers at the University of Bayreuth discover unique polymer fibres
13.12.2019 | Universität Bayreuth

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>