Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019

Suggesting an unconventional way to manipulate the properties of 2D materials in the presence of a Bose-Einstein condensate, and an alternative strategy to design high-temperature superconductors

Understanding how particles behave at the twilight zone between the macro and the quantum world gives us access to fascinating phenomena, interesting from both the fundamental and application-oriented physics perspectives.


Hybrid system formed by combining Bose-Einstein condensate (BEC) and 2D electron gas (2DEG) in novel 2D materials, such as MoS2. Electrons (black spheres) move in 2D electron gas (2DEG, upper layer), and interact with other particles present in the lower layers, where photo-excited electrons and holes (gray spheres, h.) form bound electron-hole pairs. The red wiggly lines represent Coulomb forces acting between particles with opposite charges.

Credit: IBS


Resistivity as a function of temperature for MoS2 (red) and GaAs (green) in BEC-2DEG hybrid systems. Colored solid and dashed curves represent the unconventional contributions with one and two bogolons, respectively. Black dash, dotted, and dashed curves show the impurity and phonon contributions.

Credit: IBS

For example, ultra-thin graphene-like materials are a fantastic playground to examine electrons' transport and interactions. Recently, researchers at the Center for Theoretical Physics of Complex Systems (PCS), within the Institute for Basic Science (IBS, South Korea), in collaboration with the Rzhanov Institute of Semiconductor Physics (Russia) have reported on a novel electron scattering phenomenon in 2D materials. The paper is published in Physical Review Letters.

The team considered a sample which consists of two subsystems: one made of particles with integer spin (bosons) and the other made of particles with half-integer spin (fermions).

For the bosonic component, they modelled a gas of excitons (electron-positron pairs). At low temperatures, quantum mechanics can force a large number of bosonic particles to form a Bose-Einstein condensate (BEC). This state of matter has been reported in different materials, in particular, gallium arsenide (GaAs), and it has been predicted in molybdenum disulphide (MoS2).

The fermionic subsystem is a 2D electron gas (2DEG), where electrons are limited to move in two dimensions. It exhibits intriguing magnetic and electric phenomena, including superconductivity, that is, the passage of current without resistivity.

These phenomena are related to electron scattering, which is mainly due to impurities and phonons. The latter are vibrations of the crystal lattice. Their name derives from the Greek 'phonos', meaning sound, since long-wavelength phonons give rise to sound, but they also play a role in the temperature-dependent electrical conductivity of metals.

Bosons and fermions are very different at the quantum level, so what happens when we combine BEC and 2DEG? Kristian Villegas, Meng Sun, Vadim Kovalev, and Ivan Savenko have modelled electron transport in such hybrid system.

Beyond the conventional phonons and impurities, the team described an unconventional electron scattering mechanism in BEC-2DEG hybrid systems: the interactions of an electron with one or two Bogoliubov quanta (or bogolons) - excitations of the BEC with small momenta. Although phonons and bogolons share some common features, the team found that they have important differences.

According to the models, in high-quality MoS2 at a certain range of temperatures, resistivity caused by pairs of bogolons proved to be dominating over resistivity caused by single bogolons, acoustic phonons, single-bogolons, and impurities.

The reason of such difference is the mechanism of interaction between electrons and bogolons, which is of electric nature, as opposed to electron-phonon interaction described by the deformations of the sample.

This research might be useful for the design of novel high-temperature superconductors. An apparent paradox links conductivity and superconductivity: bad conductors are usually good superconductors. In the case of electron-phonon interactions, some materials that show poor conductivity, because of strong scattering of electrons by phonons, can become good superconductors at very low temperatures.

For the same reason, noble metals, such as gold, are good conductors, but bad superconductors. If this holds true also for electron-bogolon interactions, then the researchers hypothesise that designing a bad conductor, with high resistivity caused by electron-2 bogolons interactions, might lead to "good" superconductors.

"This work not only opens perspectives in designing hybrid structures with controllable dissipation, it reports on fundamentally different temperature-dependence of scattering at low and high temperatures and sheds light on optically controlled condensate-mediated superconductivity," explains Ivan Savenko, the leader of the Light-Matter Interaction in Nanostructures (LUMIN) team at PCS.

Media Contact

Dahee Carol Kim
clitie620@ibs.re.kr
82-428-788-133

 @IBS_media

http://www.ibs.re.kr/en/ 

Dahee Carol Kim | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevLett.123.095301

More articles from Materials Sciences:

nachricht Bio-circuitry mimics synapses and neurons in a step toward sensory computing
18.10.2019 | DOE/Oak Ridge National Laboratory

nachricht Chains of atoms move at lightning speed inside metals
17.10.2019 | Linköping University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>