Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019

Suggesting an unconventional way to manipulate the properties of 2D materials in the presence of a Bose-Einstein condensate, and an alternative strategy to design high-temperature superconductors

Understanding how particles behave at the twilight zone between the macro and the quantum world gives us access to fascinating phenomena, interesting from both the fundamental and application-oriented physics perspectives.


Hybrid system formed by combining Bose-Einstein condensate (BEC) and 2D electron gas (2DEG) in novel 2D materials, such as MoS2. Electrons (black spheres) move in 2D electron gas (2DEG, upper layer), and interact with other particles present in the lower layers, where photo-excited electrons and holes (gray spheres, h.) form bound electron-hole pairs. The red wiggly lines represent Coulomb forces acting between particles with opposite charges.

Credit: IBS


Resistivity as a function of temperature for MoS2 (red) and GaAs (green) in BEC-2DEG hybrid systems. Colored solid and dashed curves represent the unconventional contributions with one and two bogolons, respectively. Black dash, dotted, and dashed curves show the impurity and phonon contributions.

Credit: IBS

For example, ultra-thin graphene-like materials are a fantastic playground to examine electrons' transport and interactions. Recently, researchers at the Center for Theoretical Physics of Complex Systems (PCS), within the Institute for Basic Science (IBS, South Korea), in collaboration with the Rzhanov Institute of Semiconductor Physics (Russia) have reported on a novel electron scattering phenomenon in 2D materials. The paper is published in Physical Review Letters.

The team considered a sample which consists of two subsystems: one made of particles with integer spin (bosons) and the other made of particles with half-integer spin (fermions).

For the bosonic component, they modelled a gas of excitons (electron-positron pairs). At low temperatures, quantum mechanics can force a large number of bosonic particles to form a Bose-Einstein condensate (BEC). This state of matter has been reported in different materials, in particular, gallium arsenide (GaAs), and it has been predicted in molybdenum disulphide (MoS2).

The fermionic subsystem is a 2D electron gas (2DEG), where electrons are limited to move in two dimensions. It exhibits intriguing magnetic and electric phenomena, including superconductivity, that is, the passage of current without resistivity.

These phenomena are related to electron scattering, which is mainly due to impurities and phonons. The latter are vibrations of the crystal lattice. Their name derives from the Greek 'phonos', meaning sound, since long-wavelength phonons give rise to sound, but they also play a role in the temperature-dependent electrical conductivity of metals.

Bosons and fermions are very different at the quantum level, so what happens when we combine BEC and 2DEG? Kristian Villegas, Meng Sun, Vadim Kovalev, and Ivan Savenko have modelled electron transport in such hybrid system.

Beyond the conventional phonons and impurities, the team described an unconventional electron scattering mechanism in BEC-2DEG hybrid systems: the interactions of an electron with one or two Bogoliubov quanta (or bogolons) - excitations of the BEC with small momenta. Although phonons and bogolons share some common features, the team found that they have important differences.

According to the models, in high-quality MoS2 at a certain range of temperatures, resistivity caused by pairs of bogolons proved to be dominating over resistivity caused by single bogolons, acoustic phonons, single-bogolons, and impurities.

The reason of such difference is the mechanism of interaction between electrons and bogolons, which is of electric nature, as opposed to electron-phonon interaction described by the deformations of the sample.

This research might be useful for the design of novel high-temperature superconductors. An apparent paradox links conductivity and superconductivity: bad conductors are usually good superconductors. In the case of electron-phonon interactions, some materials that show poor conductivity, because of strong scattering of electrons by phonons, can become good superconductors at very low temperatures.

For the same reason, noble metals, such as gold, are good conductors, but bad superconductors. If this holds true also for electron-bogolon interactions, then the researchers hypothesise that designing a bad conductor, with high resistivity caused by electron-2 bogolons interactions, might lead to "good" superconductors.

"This work not only opens perspectives in designing hybrid structures with controllable dissipation, it reports on fundamentally different temperature-dependence of scattering at low and high temperatures and sheds light on optically controlled condensate-mediated superconductivity," explains Ivan Savenko, the leader of the Light-Matter Interaction in Nanostructures (LUMIN) team at PCS.

Media Contact

Dahee Carol Kim
clitie620@ibs.re.kr
82-428-788-133

 @IBS_media

http://www.ibs.re.kr/en/ 

Dahee Carol Kim | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevLett.123.095301

More articles from Materials Sciences:

nachricht First detailed electronic study of new nickelate superconductor finds 3D metallic state
22.01.2020 | DOE/SLAC National Accelerator Laboratory

nachricht A new look at 'strange metals'
21.01.2020 | Vienna University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>