Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New neutron holography technique opens a window for obtaining clear 3-D atomic images

29.08.2017

People usually associate holograms with futuristic 3D display technologies, but in reality, holographic technologies are now being used to help study materials at the atomic level. X-rays, a high energy form of light, are often used to study atomic structure.

However, X-rays are only sensitive to the number of electrons associated with an atom. This limits the use of X-rays for studying materials made up of lighter elements. Neutron measurements can often fill in the gaps in structures when X-ray measurements fail, but neutron beams are harder to make and have lower intensities than X-ray beams, which limits their versatility.


Nearest Ca2+ images are split into two parts due to the extra positive charge by Eu3+. The interstitial F- image is observed between Ca2+ images. The additional F- is needed for the compensation of the excessive charge. Dashed circles indicate original positions of Ca atoms without doping Eu.

Credit: NITech

Now, a collaboration among Japanese researchers working at national particle accelerator facilities across Japan has developed a new multiple-wavelength neutron holography technique that can give insights into previously unknown structures.

They demonstrated a new neutron holographic method using a Eu-doped CaF2 single crystal and obtained clear three-dimensional atomic images around trivalent Eu substituted divalent Ca, revealing never-before-seen intensity features of the local structure that allows it to maintain charge neutrality.

"We knew that neutron holography might be able to tell us more about the structure of a europium-doped calcium fluoride crystal," says lead author Kouichi Hayashi.

"Europium ions add extra positive charge to the crystal structure, and our neutron holograms showed how fluorine atoms arranged in the lattice to balance this excess charge. These kinds of structural problems are often encountered by materials scientists developing new electronic materials, and our method offers an exciting new tool for these researchers."

The new holographic method works by firing neutrons with controlled speed at a sample, which in this case is the europium-doped calcium fluoride crystals. Neutrons are normally thought of as particles, but also have wave-like properties similar to light, depending on their speed.

When the neutrons hit europium atoms, gamma rays are produced in a pattern controlled by the local structure. The gamma ray patterns, or holograms, measured from neutrons travelling at different speeds are combined to produce a three-dimensional representation of the europium atoms in the crystal.

Hayashi says, "Neutron sources are less intense than X-ray sources, but it is essential that we work around this issue to develop more effective methods for exploring structures with light elements. Our work here represents a step towards a full toolbox of commentary X-ray and neutron techniques for materials research."

Kuniaki Shiraki | EurekAlert!

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>