Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials science: A sticky problem

12.12.2011
The US Navy estimates that biofouling—the accumulation of unwanted marine organisms, such as barnacles and seaweeds, on the hulls of ships—can reduce a ship’s speed by 10% and increase fuel consumption by 40%.

Coating the ship’s hull with biocides can help prevent biofouling, but the chemicals used are often harmful to the environment. An environmentally friendly alternative to biocides is the use of microtextured surfaces to which marine organisms have difficulty latching onto.

William Birch and co-workers at A*STAR’s Institute of Materials Research and Engineering1 have now revealed a mechanism by which microtextured surfaces deter marine organisms. The finding could help to develop new artificial surfaces for preventing biofouling.

Previous studies have found that barnacle larvae preferentially settle in cracks and depressions because the voids offer better protection from the currents in which they feed. However, the reason why microtextured surfaces reduce barnacle larvae settlement was unclear. For this reason, the researchers constructed an experimental setup which allows them not only to view the exploration behavior of barnacle larvae on different surfaces, but also to study how the size of surface features influences their surface exploration (see image).

To investigate the impact of surface texture on barnacle settlement behavior, Birch and co-workers fabricated polymer surfaces with features of the same size of a larva’s cyprid attachment pad, which is elliptical in shape and about 20 by 30 microns or thousandths of a millimeter. The surfaces were textured with pillars placed 10 microns apart. The columns were five microns and 30 microns high, and 5, 10, 20, 30, 50 and 100 microns in diameter. A smooth surface without pillars was used as a control. Exploration and settling behavior of the larvae were filmed using close-range microscopy.

The researchers found that barnacle larvae were unperturbed by the five-micron high pillars, as their flexible attachment disks could simultaneously flow over and contact the top of the pillar and the bottom of the space between pillars. Thirty-micron high pillars, however, had a dramatic impact on larval behavior. At smaller diameters, the contact area afforded by the tops of the pillars was small, and the larvae found it difficult to attach to the sides of such slim pillars. At diameters of 30 microns or greater, the larvae tended to form attachment points in the cracks between the columns with their disks wrapping around the sides of the column.

“These and other recent findings have spawned a multidisciplinary research program (Innovative Marine Antifouling Solutions for High Value Applications, IMAS), whose objective is to engineer patterned surfaces and measure performance by quantifying their interactions with marine organisms,” says Birch.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

References

Chaw, K. C., Dickinson, G. H., Ang, K. Y., Deng J. & Birch W. R. Surface exploration of Amphibalanus amphitrite cyprids on microtextured surfaces. Biofouling 27, 413–422 (2011). | article

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg

More articles from Materials Sciences:

nachricht New materials of perovskite challenge the chemical intuition
01.07.2020 | Institute of Physics, Chinese Academy of Sciences

nachricht How to design more reliable nano- and micro-electro-mechanical systems
30.06.2020 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

Im Focus: NASA observes large Saharan dust plume over Atlantic ocean

NASA-NOAA's Suomi NPP satellite observed a huge Saharan dust plume streaming over the North Atlantic Ocean, beginning on June 13. Satellite data showed the dust had spread over 2,000 miles.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, Colin Seftor, an atmospheric scientist, created an animation of the dust and aerosols from the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

First exposed planetary core discovered

01.07.2020 | Physics and Astronomy

Energy-saving servers: Data storage 2.0

01.07.2020 | Power and Electrical Engineering

Laser takes pictures of electrons in crystals

01.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>