Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lighter than aluminum and stronger than steel: innovative materials with carbon fibres made from algae

01.07.2019

In combination with granite or other types of hard rock, carbon fibres make possible all-new construction and building materials. Theoretical calculations show: If the carbon fibres are produced from algae oil, production of the innovative materials extracts more carbon dioxide from the atmosphere than the process sets free. A research project spearheaded by the Technical University of Munich (TUM) is to further advance these technologies.

The most recent global climate report (IPCC Special Report on Global Warming of 1.5 °C) considers manufacturing processes which use more carbon dioxide (CO2) than they release to be an important option to get climate change under control.


e-scooter step made of a composite material integrating granite and carbon fibers made from algae.

Image: Andreas Battenberg / TUM


Pariya Shaigani, PhD candidate at the Werner Siemens Chair of Synthetic Biotechnology, on an e-scooter with a step made from a composite material integrating granite and carbon fibers from algae.

Image: Andreas Battenberg / TUM

The objective of the project started today under the title “Green Carbon” is to develop manufacturing processes for polymers and carbon-based light-weight construction materials based on algae which may be utilised in the aviation and automotive industry, for example.

The development of the various processes is accompanied by technological, economical and sustainability analyses. The German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) has dedicated funds amounting to around 6.5 million Euro to fund the research at TU Munich.

Microalgae bind carbon dioxide

Due to their fast growth, microalgae like those cultivated in the globally unrivalled technical algae centre at TUM’s Ludwig Bölkow Campus south of Munich can actively store the greenhouse gas CO2 in form of biomass. CO2 is mainly bound in sugars and algae oil. These can be used in chemical and biotechnological processes to produce precursors for a variety of industrial processes.

For example, oil-forming yeasts produce yeast oil from the algae sugars, which is a feedstock for sustainable plastics. Furthermore, enzymes can split the yeast oil into glycerine and free fatty acids. The free fatty acids are precursors for products like high-quality additives for lubricants, among others; the glycerine can be turned into carbon fibres.

Sustainable production of carbon fibres

In the further course of the project, the plastics will be combined with the carbon fibres to produce corresponding composite materials. “The carbon fibres produced from algae are absolutely identical to the fibres currently in use in the industry,” says project lead Thomas Brück, professor for synthetic biotechnology at TU Munich. “Therefore, they can be used for all standard processes in aviation and automotive production.”

Furthermore, carbon fibres and hard rock can be used in a process of the industrial partner TechnoCarbon Technologies to produce novel construction materials. Not only do they have a negative CO2 balance, they are also lighter than aluminium and stronger than steel.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Thomas Brück
Technical University of Munich
Werner Siemens-Chair for Synthetic Biotechnology
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13253 – e-mail: brueck@tum.de
Web: http://www.wssb.ch.tum.de

Originalpublikation:

Carbon Capture and Sustainable Utilization by Algal Polyacrylonitrile Fiber Production: Process Design, Techno-Economic Analysis, and Climate Related Aspects. Uwe Arnold, Thomas Brück, Andreas De Palmenaer und Kolja Kuse, Industrial & Engineering Chemistry Research 2018 57 (23), 7922-7933, DOI: 10.1021/acs.iecr.7b04828

Energy-Efficient Carbon Fiber Production with Concentrated Solar Power: Process Design and Techno-economic Analysis. Uwe Arnold, Andreas De Palmenaer, Thomas Brück und Kolja Kuse. Industrial & Engineering Chemistry Research 2018 57 (23), 7934-7945, DOI: 10.1021/acs.iecr.7b04841

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/35079/ Earlier press release on algae carbon fibers
https://www.tum.de/nc/en/about-tum/news/press-releases/details/32656/ TUM-algae cultivation center
https://mediatum.ub.tum.de/1507350 High resolution images

Dr. Ulrich Marsch | Technische Universität München

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>