Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In-depth insights into glass corrosion

28.02.2019

Silicate glass has many applications, including the use as a nuclear waste form to immobilize radioactive elements from spent fuel. However, it has one disadvantage - it corrodes when it comes into contact with aqueous solutions. Scientists at the University of Bonn were able to observe in detail which processes take place. The results have now been published in the journal Nature Materials.

The mineralogists and geochemists at the University of Bonn used the so-called confocal Raman spectroscopy for their study, where a laser beam is focused on a sample through a microscope.


Detailed insight into the corrosion of glas: Prof. Dr. Thorsten Geisler-Wierwille from the Institute for Geosciences and Meteorology at the Raman spectrometer with built-in heating vessel.

© Photo: Barbara Frommann/Uni Bonn

The light interacts with the molecules in the material, causing them to vibrate. Individually backscattered photons change their color depending on the structure and the chemical properties of the sample. This phenomenon is known as the Raman effect.

The originally monochromatic light now also contains other color components. The color spectrum provides detailed insights into the structure and composition of the matter that is excited by the laser beam.

What makes this method even more interesting: The laser can be focused to a specific point in the space with an accuracy of a few thousandths of a millimeter. This facilitates studying the sample point by point, but not only on its surface: If the sample is transparent, the beam can also be focused into internal areas. “And that's exactly what we did,” explains Prof. Dr. Thorsten Geisler-Wierwille from the Institute for Geosciences and Meteorology at the University of Bonn.

Opal layer at the glass surface

The researchers used a small piece of silicate glass as a sample that reacted with an aqueous solution in a specially developed heating vessel. It was possible to move the vessel in steps of one thousandth of a millimeter under the Raman microscope - to the right, left, forward, and backward, but also up and down.

“We scanned the glass point by point and recorded a Raman spectrum while it reacted with the solution,” says Lars Dohmen, who is currently completing his doctorate under the supervision of Geisler-Wierwille. “This allowed us to investigate the reaction almost in real time. This currently works at temperatures of up to 150 degrees, which, for instance, are also expected in a nuclear repository.”

The results indicate that silicate glass quickly dissolves when it comes into contact with aqueous solutions - almost like a sugar cube in a cup of coffee. However, while the sugar molecules are quickly distributed evenly in the water by diffusion, this is not the case during glass corrosion: Part of the resulting dissolved silica seems to remain near the surface of the glass. At some point, its concentration becomes so high that it solidifies.

“We then also speak of silica precipitation,” explains Prof. Geisler-Wierwille. “Silica molecules in the solution interlink to form aggregates only a few millionths of a millimeter in size, which are deposited at the glass surface and mature into an opal-like state.”

However, the researchers were able to show that this opal layer does not provide perfect protection against water. Instead, the dissolution-precipitation front continues to eat its way into the glass. As a result, the glass is gradually replaced by opal, although at a decreasing velocity.

“For the first time, we have experimentally demonstrated that a boundary solution with dissolved silica forms between the opal layer and the underlying glass,” explains Geisler-Wierwille. “As the thickness of the opal layer increases, it increasingly prevents the silica solution from being transported away from the reaction interface. “We suspect that it eventually gels to a viscous mass, which dramatically slows down glass dissolution.”

In the study, this was already the case after 25 thousandths of a millimeter. “Even though the reaction became very slow, it cannot be ruled out that this corrosion process will release radioactive elements over long periods of time,” emphasizes Geisler-Wierwille. However, glasses used for the vitrification of nuclear waste are by far more stable against water than the investigated glass.

“We want to extend our experiments to these glass types in the near future,” emphasizes the researcher. Studies with silicate glass in which radioactive elements are already incorporated are also planned. The researchers and their partners want to investigate the influence of self-irradiation damage in the glass on its corrosion resistance. “The current work should mainly prove that our new method can provide far-reaching insights into these processes,” says Geisler-Wierwille.

The level of interest shown by industry in this work is also reflected in the financing of the pilot project: One of the sponsors of the study is the renowned glass manufacturer Schott AG.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Thorsten Geisler-Wierwille
Institute for Geosciences and Meteorology (formerly Steinmann Institute)
University of Bonn
Tel. +49 (0)228/73 2733
E-mail: tgeisler@uni-bonn.de

Originalpublikation:

Thorsten Geisler, Lars Dohmen, Christoph Lenting and Moritz B. K. Fritzsche: Real-time in situ observations of reaction and transport phenomena during silicate glass corrosion by fluid-cell Raman spectroscopy. Nature Materials, https://doi.org/10.1038/s41563-019-0293-8

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Materials Sciences:

nachricht Shape-shifting sheets
21.08.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht New 3D interconnection technology for future wearable bioelectronics
15.08.2019 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>