Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid optics bring color imaging using ultrathin metalenses into focus

13.02.2018

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require lenses made of a new array of materials.


The UW team's metalens consists of arrays of tiny pillars of silicon nitride on glass which affect how light interacts with the surface. Depending on the size and arrangement of these pillars, microscopic lenses with different properties can be designed. A traditional metalens (top) exhibits shifts in focal length for different wavelengths of light, producing images with severe color blur. The UW team's modified metalens design (bottom), however, interacts with different wavelengths in the same manner, generating uniformly blurry images which enable simple and fast software correction to recover sharp and in-focus images.

Credit: Shane Colburn/Alan Zhan/Arka Majumdar

In a paper published Feb. 9 in Science Advances, scientists at the University of Washington announced that they have successfully combined two different imaging methods -- a type of lens designed for nanoscale interaction with lightwaves, along with robust computational processing -- to create full-color images.

The team's ultrathin lens is part of a class of engineered objects known as metasurfaces. Metasurfaces are 2-D analogs of metamaterials, which are manufactured materials with physical and chemical properties not normally found in nature. A metasurface-based lens -- or metalens -- consists of flat microscopically patterned material surfaces designed to interact with lightwaves. To date, images taken with metalenses yield clear images -- at best -- for only small slices of the visual spectrum. But the UW team's metalens -- in conjunction with computational filtering -- yields full-color images with very low levels of aberrations across the visual spectrum.

"Our approach combines the best aspects of metalenses with computational imaging -- enabling us, for the first time, to produce full-color images with high efficiency," said senior author Arka Majumdar, a UW assistant professor of physics and electrical engineering.

Instead of manufactured glass or silicone, metalenses consist of repeated arrays of nanometer-scale structures, such as columns or fins. If properly laid out at these minuscule scales, these structures can interact with individual lightwaves with precision that traditional lenses cannot. Since metalenses are also so small and thin, they take up much less room than the bulky lenses of cameras and high-resolution microscopes. Metalenses are manufactured by the same type of semiconductor fabrication process that is used to make computer chips.

"Metalenses are potentially valuable tools in optical imaging since they can be designed and constructed to perform well for a given wavelength of light," said lead author Shane Colburn, a UW doctoral student in electrical engineering. "But that has also been their drawback: Each type of metalens only works best within a narrow wavelength range."

In experiments producing images with metalenses, the optimal wavelength range so far has been very narrow: at best around 60 nanometers wide with high efficiency. But the visual spectrum is 300 nanometers wide.

Today's metalenses typically produce accurate images within their narrow optimal range -- such as an all-green image or an all-red image. For scenes that include colors outside of that optimal range, the images appear blurry, with poor resolution and other defects known as "chromatic aberrations." For a rose in a blue vase, a red-optimized metalens might pick up the rose's red petals with few aberrations, but the green stem and blue vase would be unresolved blotches -- with high levels of chromatic aberrations.

Majumdar and his team hypothesized that, if a single metalens could produce a consistent type of visual aberration in an image across all visible wavelengths, then they could resolve the aberrations for all wavelengths afterward using computational filtering algorithms. For the rose in the blue vase, this type of metalens would capture an image of the red rose, blue vase and green stem all with similar types of chromatic aberrations, which could be tackled later using computational filtering.

They engineered and constructed a metalens whose surface was covered by tiny, nanometers-wide columns of silicon nitride. These columns were small enough to diffract light across the entire visual spectrum, which encompasses wavelengths ranging from 400 to 700 nanometers.

Critically, the researchers designed the arrangement and size of the silicon nitride columns in the metalens so that it would exhibit a "spectrally invariant point spread function." Essentially, this feature ensures that -- for the entire visual spectrum -- the image would contain aberrations that can be described by the same type of mathematical formula. Since this formula would be the same regardless of the wavelength of light, the researchers could apply the same type of computational processing to "correct" the aberrations.

They then built a prototype metalens based on their design and tested how well the metalens performed when coupled with computational processing. One standard measure of image quality is "structural similarity" -- a metric that describes how well two images of the same scene share luminosity, structure and contrast. The higher the chromatic aberrations in one image, the lower the structural similarity it will have with the other image. The UW team found that when they used a conventional metalens, they achieved a structural similarity of 74.8 percent when comparing red and blue images of the same pattern; however, when using their new metalens design and computational processing, the structural similarity rose to 95.6 percent. Yet the total thickness of their imaging system is 200 micrometers, which is about 2,000 times thinner than current cellphone cameras.

"This is a substantial improvement in metalens performance for full-color imaging -- particularly for eliminating chromatic aberrations," said co-author Alan Zhan, a UW doctoral student in physics.

In addition, unlike many other metasurface-based imaging systems, the UW team's approach isn't affected by the polarization state of light -- which refers to the orientation of the electric field in the 3-D space that lightwaves are traveling in.

The team said that its method should serve as a road map toward making a metalens -- and designing additional computational processing steps -- that can capture light more effectively, as well as sharpen contrast and improve resolution. That may bring tiny, next-generation imaging systems within reach.

###

The research was funded by the UW, an Intel Early Career Faculty Award and an Amazon Catalyst Award.

Link to full release with images: http://www.washington.edu/news/2018/02/12/hybrid-optics-bring-color-imaging-using-ultrathin-metalenses-into-focus/

Link to Dropbox folder containing images, captions and credit information: https://www.dropbox.com/sh/5ysvqi8v77sy31q/AAD1VVXaYe0Q1MT4BL_Y3LhZa?dl=0

For more information, contact Majumdar at arka@uw.edu or 206-616-5558.

Media Contact

James Urton
jurton@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

James Urton | EurekAlert!

More articles from Materials Sciences:

nachricht Beyond conventional solution-process for 2-D heterostructure
22.06.2018 | Science China Press

nachricht Graphene assembled film shows higher thermal conductivity than graphite film
22.06.2018 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>