Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All Foamed Up

07.02.2012
Synthesis of macroporous polystyrene through polymerization of foamed emulsions

Packaging, insulation, and impact protection are examples of commercial uses of polymer foams. Depending on the intended application, the properties required of these foams can differ greatly.


In the journal Angewandte Chemie, a team of German, Irish, and French researchers led by Cosima Stubenrauch at the University of Stuttgart has now introduced a new method for the controlled production of structured foams. Their technique is based on the polymerization of foamed emulsions of oil in water.

Not all foams are equal: a kitchen sponge, for example, is not the same as a piece of Styrofoam packaging. Different applications make different demands on a foam, which has led to efforts to control the properties of foams in a targeted fashion. In addition to a foam’s chemical composition, its structure also plays an important role. The property profile of a foam depends on the number and size of the pores, whether the pores are closed off or connected, and the thickness of the polymer supports between the pores.

“The high complexity of conventional production processes, which generate foams from polymer melts and blowing agents, makes control over the morphology and properties of the product a big challenge,” explains Stubenrauch.

An alternative approach involves the use of microscopically small templates to force the foam into the desired structure. For example, tiny droplets of water can be finely dispersed (emulsified) in a solution of monomer, then removed after the polymerization is complete. Another process uses particles to stabilize air bubbles in the reaction mixture.

Stubenrauch’s team has now introduced a new concept for the synthesis of macroporous polystyrene foams: the polymerization of foamed oil-in-water emulsions. Styrene (the “oil phase”) is first emulsified in an aqueous phase. Afterward, the emulsion is stabilized with an anionic surfactant and foamed with nitrogen. This forms bubbles surrounded by tightly packed drops of emulsion. In the third step, the polymerization is initiated by irriadiation with UV light. The drops of emulsion dissolve away, while the structure of the foam—that of the template—is maintained.

The resulting polymer foams contain pores that are partially interconnected through “windows”. “While the high density of the polymer and the strong bonds provide good mechanical stability, the presence of the windows allows air, fluids, or other materials to flow through the foam,” says Stubenrauch. “Control over these properties is desirable for many applications, such as supports, filter agents, or biologically inspired scaffolding. This production technique is simple and versatile and represents a highly promising alternative to other template-based synthetic methods.”

About the Author
Dr. Cosima Stubenrauch is Full Professor and head of the chair “Physical Chemistry of Condensed Matter” at the University of Stuttgart, Germany. She has been working on colloids and interfaces for 18 years. She is also docent at the KTH Royal Institute of Technology, Stockholm, Sweden and the recipient of 11 awards among which the Nernst–Haber–Bodenstein Award 2007.
Author: Cosima Stubenrauch, Universität Stuttgart (Germany), http://www.ipc.uni-stuttgart.de/AKStubenrauch/group/staff/stubenrauch/
Title: Synthesis of Macroporous Polystyrene by the Polymerization of Foamed Emulsions

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201107806

Cosima Stubenrauch | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Materials Sciences:

nachricht Freiburg researcher investigate the origins of surface texture
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding Metal Ion Release from Hip Implants
17.02.2020 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>