Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers develop smart material that changes stiffness when twisted or bent

15.02.2018

A new smart and responsive material can stiffen up like a worked-out muscle, say the Iowa State University engineers who developed it.

Stress a muscle and it gets stronger. Mechanically stress the rubbery material - say with a twist or a bend - and the material automatically stiffens by up to 300 percent, the engineers said. In lab tests, mechanical stresses transformed a flexible strip of the material into a hard composite that can support 50 times its own weight.


Examples of the new smart material, left to right: A flexible strip; a flexible strip that stiffened when twisted; a flexible strip transformed into a hard composite that can hold up a weight.

Credit: Christopher Gannon/Iowa State University

This new composite material doesn't need outside energy sources such as heat, light or electricity to change its properties. And it could be used in a variety of ways, including applications in medicine and industry.

The material is described in a paper recently published online by the scientific journal Materials Horizons. The lead authors are Martin Thuo and Michael Bartlett, Iowa State assistant professors of materials science and engineering. First authors are Boyce Chang and Ravi Tutika, Iowa State doctoral students in materials science and engineering. Chang is also a student associate of the U.S. Department of Energy's Ames Laboratory.

Iowa State startup funds for Thuo and Bartlett supported development of the new material. Thuo's Black & Veatch faculty fellowship also helped support the project.

Development of the material combined Thuo's expertise in micro-sized, liquid-metal particles with Bartlett's expertise in soft materials such as rubbers, plastics and gels.

It's a powerful combination.

The researchers found a simple, low-cost way to produce particles of undercooled metal - that's metal that remains liquid even below its melting temperature. The tiny particles (they're just 1 to 20 millionths of a meter across) are created by exposing droplets of melted metal to oxygen, creating an oxidation layer that coats the droplets and stops the liquid metal from turning solid. They also found ways to mix the liquid-metal particles with a rubbery elastomer material without breaking the particles.

When this hybrid material is subject to mechanical stresses - pushing, twisting, bending, squeezing - the liquid-metal particles break open. The liquid metal flows out of the oxide shell, fuses together and solidifies.

"You can squeeze these particles just like a balloon," Thuo said. "When they pop, that's what makes the metal flow and solidify."

The result, Bartlett said, is a "metal mesh that forms inside the material."

Thuo and Bartlett said the popping point can be tuned to make the liquid metal flow after varying amounts of mechanical stress. Tuning could involve changing the metal used, changing the particle sizes or changing the soft material.

In this case, the liquid-metal particles contain Field's metal, an alloy of bismuth, indium and tin. But Thuo said other metals will work, too.

"The idea is that no matter what metal you can get to undercool, you'll get the same behavior," he said.

The engineers say the new material could be used in medicine to support delicate tissues or in industry to protect valuable sensors. There could also be uses in soft and bio-inspired robotics or reconfigurable and wearable electronics. The Iowa State University Research Foundation is working to patent the material and it is available for licensing.

"A device with this material can flex up to a certain amount of load," Bartlett said. "But if you continue stressing it, the elastomer will stiffen and stop or slow down these forces."

And that, the engineers say, is how they're putting some muscle in their new smart material.

###

The research team

Additional co-authors of the Materials Horizons paper describing smart composites that change stiffness under mechanical stress are:

Joel Cutinho, a former Iowa State graduate student who now works for Nanolab Technologies; Stephanie Oyola-Reynoso, a former Iowa State graduate student who's now a postdoctoral research associate at Harvard University in Massachusetts; and Jiahao Chen, a former Iowa State graduate student who's now a postdoctoral research associate at Northwestern University in Illinois.

Read the paper

Mechanically triggered composite stiffness tuning through thermodynamic relaxation (ST3R), http://pubs.rsc.org/en/content/articlehtml/2018/mh/c8mh00032h, DOI: 10.1039/C8MH00032H

Media Contact

Martin Thuo
mthuo@iastate.edu
515-294-8581

 @IowaStateUNews

http://www.iastate.edu 

Martin Thuo | EurekAlert!

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>