Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers develop smart material that changes stiffness when twisted or bent

15.02.2018

A new smart and responsive material can stiffen up like a worked-out muscle, say the Iowa State University engineers who developed it.

Stress a muscle and it gets stronger. Mechanically stress the rubbery material - say with a twist or a bend - and the material automatically stiffens by up to 300 percent, the engineers said. In lab tests, mechanical stresses transformed a flexible strip of the material into a hard composite that can support 50 times its own weight.


Examples of the new smart material, left to right: A flexible strip; a flexible strip that stiffened when twisted; a flexible strip transformed into a hard composite that can hold up a weight.

Credit: Christopher Gannon/Iowa State University

This new composite material doesn't need outside energy sources such as heat, light or electricity to change its properties. And it could be used in a variety of ways, including applications in medicine and industry.

The material is described in a paper recently published online by the scientific journal Materials Horizons. The lead authors are Martin Thuo and Michael Bartlett, Iowa State assistant professors of materials science and engineering. First authors are Boyce Chang and Ravi Tutika, Iowa State doctoral students in materials science and engineering. Chang is also a student associate of the U.S. Department of Energy's Ames Laboratory.

Iowa State startup funds for Thuo and Bartlett supported development of the new material. Thuo's Black & Veatch faculty fellowship also helped support the project.

Development of the material combined Thuo's expertise in micro-sized, liquid-metal particles with Bartlett's expertise in soft materials such as rubbers, plastics and gels.

It's a powerful combination.

The researchers found a simple, low-cost way to produce particles of undercooled metal - that's metal that remains liquid even below its melting temperature. The tiny particles (they're just 1 to 20 millionths of a meter across) are created by exposing droplets of melted metal to oxygen, creating an oxidation layer that coats the droplets and stops the liquid metal from turning solid. They also found ways to mix the liquid-metal particles with a rubbery elastomer material without breaking the particles.

When this hybrid material is subject to mechanical stresses - pushing, twisting, bending, squeezing - the liquid-metal particles break open. The liquid metal flows out of the oxide shell, fuses together and solidifies.

"You can squeeze these particles just like a balloon," Thuo said. "When they pop, that's what makes the metal flow and solidify."

The result, Bartlett said, is a "metal mesh that forms inside the material."

Thuo and Bartlett said the popping point can be tuned to make the liquid metal flow after varying amounts of mechanical stress. Tuning could involve changing the metal used, changing the particle sizes or changing the soft material.

In this case, the liquid-metal particles contain Field's metal, an alloy of bismuth, indium and tin. But Thuo said other metals will work, too.

"The idea is that no matter what metal you can get to undercool, you'll get the same behavior," he said.

The engineers say the new material could be used in medicine to support delicate tissues or in industry to protect valuable sensors. There could also be uses in soft and bio-inspired robotics or reconfigurable and wearable electronics. The Iowa State University Research Foundation is working to patent the material and it is available for licensing.

"A device with this material can flex up to a certain amount of load," Bartlett said. "But if you continue stressing it, the elastomer will stiffen and stop or slow down these forces."

And that, the engineers say, is how they're putting some muscle in their new smart material.

###

The research team

Additional co-authors of the Materials Horizons paper describing smart composites that change stiffness under mechanical stress are:

Joel Cutinho, a former Iowa State graduate student who now works for Nanolab Technologies; Stephanie Oyola-Reynoso, a former Iowa State graduate student who's now a postdoctoral research associate at Harvard University in Massachusetts; and Jiahao Chen, a former Iowa State graduate student who's now a postdoctoral research associate at Northwestern University in Illinois.

Read the paper

Mechanically triggered composite stiffness tuning through thermodynamic relaxation (ST3R), http://pubs.rsc.org/en/content/articlehtml/2018/mh/c8mh00032h, DOI: 10.1039/C8MH00032H

Media Contact

Martin Thuo
mthuo@iastate.edu
515-294-8581

 @IowaStateUNews

http://www.iastate.edu 

Martin Thuo | EurekAlert!

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>