Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Coupled magnetic materials show interesting properties for quantum applications


Like fans that blow in sync, certain magnetic materials can exhibit interesting energetic properties.

In order to find new ways to transmit and process information, scientists have begun to explore the behavior of electronic and magnetic spins, specifically their resonant excitations, as information carriers.

Researchers at Argonne have found a new platform for coherent information transduction with magnons in an exchange-coupled magnetic thin film bilayer. The results show new insights in both fundamental physics and device potentials for spintronics and quantum applications.

Credit: Argonne National Laboratory

In some cases, researchers have identified new phenomena that could help eventually inform the creation of new devices for spintronic and quantum applications.

In a new study led by the U.S. Department of Energy's (DOE) Argonne National Laboratory, researchers have uncovered a novel way in which the excitations of magnetic spins in two different thin films can be strongly coupled to each other through their common interface.

This dynamic coupling represents one kind of hybrid system that is getting increasing amounts of attention from scientists interested in quantum information systems.

"For quantum information systems, the name of the game is to take some excitation and to manipulate it in some way or transfer it to another excitation, and that's pretty much at the heart of what we're doing here." -- University of Illinois materials scientist Axel Hoffmann

"One way to think about it is as though you have two pairs of masses attached to springs," said Argonne postdoctoral researcher and first author Yi Li. "We know that each mass connected to a spring will oscillate periodically when it's hit from the outside. But if we connect the two masses with a third spring, then the oscillation of one mass will also trigger the oscillation of the other mass, which can be used to exchange information between the springs. The role of the third spring here is played by the interfacial exchange coupling between the two magnetic layers."

With some smart engineering, researchers can set the free oscillation frequency of the two layers of magnetic spins -- the "masses" -- to be identical, where they are the most favorable to couple. In addition, they show that the two systems can be "strongly" coupled, a state which is important to maintain coherence and may inspire applications in quantum information.

Besides the strong-coupling state, researchers have found an additional new effect in the magnetic bilayer which has an impact on the coherence of their excitations: one side can pump energy, called spin current, into the other one. One notable and intriguing behavior concerning the new dynamic coupling involves the exchange of energy between the two layers in the magnetic material.

According to University of Illinois materials scientist and study author Axel Hoffmann, each layer has a particular length of time over which the magnetization dynamics will usually independently persist. However, with the introduction of the spin current pushing spins in a particular direction, there can be enough energy transferred so that the magnetization dynamics last substantially longer in one of the layers.

"We knew that a rigid kind of coupling existed, but the fact is that the other dynamic coupling is also important -- and important enough so that we can't neglect it," Hoffmann said. "For quantum information systems, the name of the game is to take some excitation and to manipulate it in some way or transfer it to another excitation, and that's pretty much at the heart of what we're doing here."

"There is an intrinsic magnetic interaction that couples these two layers," Li added. "We can apply a magnetic field, and then we can determine whether these two layers are pumping in phase or out of phase. Such controlled interactions are in principle what people are doing for quantum information processing."

According to Hoffmann, the experiment started with the identification of two magnetic systems that the researchers knew were coupled together. By seeking to make the coupling as strong as it could possibly be compared to the individual excitations in the material, the researchers were able to see the additional detail of how the spin pumping energy transfer came about.


A paper based on the study, "Coherent spin pumping in a strongly coupled magnon-magnon hybrid system," appeared in the March 17 issue of Physical Review Letters. Other authors of the study included Argonne's Zhizhi Zhang, Jonathan Gibbons, John Pearson, Valentine Novosad, and Wei Zhang; Paul Haney, Mark Stiles, and Vivek Amin of the National Institute of Standards and Technology; Wei Cao and William Bailey of Columbia University; and Joseph Sklenar of Wayne State University.

The Argonne portion of the research was funded by the DOE's Office of Science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit

Media Contact

Diana Anderson


Diana Anderson | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht Looking at linkers helps to join the dots
10.07.2020 | King Abdullah University of Science & Technology (KAUST)

nachricht Goodbye Absorbers: High-Precision Laser Welding of Plastics
10.07.2020 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>