Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer vision helps SLAC scientists study lithium ion batteries

08.05.2020

Lithium-ion batteries lose their juice over time, causing scientists and engineer to work hard to understand that process in detail. Now, scientists at the Department of Energy's SLAC National Accelerator Laboratory have combined sophisticated machine learning algorithms with X-ray tomography data to produce a detailed picture of how one battery component, the cathode, degrades with use.

The new study, published May 8 in Nature Communications, focused on how to better visualize what's going on in cathodes made of nickel-manganese-cobalt, or NMC. In these cathodes, NMC particles are held together by a conductive carbon matrix, and researchers have speculated that one cause of performance decline could be particles breaking away from that matrix.


A new computer vision algorithm for identifying particles in a lithium-ion battery cathode has helped researchers track the cathode's degradation over time.

Image courtesy Yijin Liu/SLAC National Accelerator Laboratory

The team's goal was to combine cutting-edge capabilities at SLAC's Stanford Synchrotron Radiation Lightsource (SSRL) and the European Synchrotron Radiation Facility (ESRF) to develop a comprehensive picture of how NMC particles break apart and break away from the matrix and how that might contribute to performance losses.

Of course, it's a tall order for humans to figure out what's going on just by looking at pictures of an NMC cathode, so the team turned to computer vision, a subfield of machine learning algorithms originally designed to scan images or videos and identify and track objects like dogs or cars.

Even then, there were challenges. Computer vision algorithms often zero in on boundaries defined by light or dark lines, so they'd have a hard time differentiating between several small NMC particles stuck together and a single large but partially fractured one; to most computer vision systems, those fractures would look like clean breaks.

To address that problem, the team used a type of algorithm set up to deal with hierarchical objects - for example, a jigsaw puzzle, which we would think of as a complete entity even though it's made up of many individual pieces.

With input and judgments from the researchers themselves, they trained this algorithm to distinguish different kinds of particles and thus develop a three-dimensional picture of how NMC particles, whether large or small, fractured or not, break away from the cathode.

They discovered that particles detaching from the carbon matrix really do contribute significantly to a battery's decline, at least under conditions one would typically see in consumer electronics, such as smart phones.

Second, while large NMC particles are more likely to become damaged and break away, quite a few smaller particles break away, too, and overall, there's more variation in the way small particles behave, said Yijin Liu, a staff scientist at SLAC and a senior author of the new paper. That's important because researchers had generally assumed that by making battery particles smaller, they could make longer-lasting batteries - something the new study suggests might not be so straightforward, Liu said.

###

SSRL is a DOE Office of Science user facility. Additional authors include researchers from the Howard Hughes Medical Institute, the European Synchrotron Radiation Facility, Virginia Polytechnic Institute and State University, the Chinese Academy of Sciences and Purdue University. The research at SLAC was supported by the DOE Office of Science.

Nathan Collins | EurekAlert!
Further information:
https://www6.slac.stanford.edu/news/2020-05-08-computer-vision-helps-slac-scientists-study-lithium-ion-batteries.aspx
http://dx.doi.org/10.1038/s41467-020-16233-5

More articles from Materials Sciences:

nachricht The lightest electromagnetic shielding material in the world
02.07.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht New materials of perovskite challenge the chemical intuition
02.07.2020 | Institute of Physics, Chinese Academy of Sciences

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

The lightest electromagnetic shielding material in the world

02.07.2020 | Materials Sciences

Spintronics: Faster data processing through ultrashort electric pulses

02.07.2020 | Information Technology

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>