Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brightest source of entangled photon

03.09.2018

Scientists at Leibniz Institute for Solid State and Materials Research Dresden (IFW) and at Leibniz University Hannover (LUH) have developed a broadband optical antenna for highly efficient extraction of entangled photons. With a yield of 37% per pulse, it is the brightest source of entangled photons reported so far.

The rules of quantum physics state, that two photons can interact in such a way that they become deeply linked and remain connected even when separated by great distances. Any change in the quantum state of one photon results in a corresponding change in the remote partner.


Optical setup for experiments with entangled photons at IFW Dresden

Photo: Jürgen Loesel

This promises a great potential for application in future quantum communication, in particular for secure quantum cryptography. The efficient generation of entangled pairs of photons is an important prerequisite for the implementation of such a technology.

The transition of photons over long distances is associated with large losses, so that only 100 kilometers could be realized in fiber optic cables so far. One year ago, Chinese scientists achieved a distance of 7600 kilometers by satellite in empty space. The better the brightness of the photon source, the better the losses over long distances can be tolerated. The development of bright entangled photon sources is therefore an important approach to realize the long-distance quantum communication.

Scientists from IFW and LUH have set a new record in this respect: A research team headed by Prof. Oliver G. Schmidt and Prof. Fei Ding has designed a source of entangled photons with unprecedented brightness. The entangled photon pair efficiency of the new device is 37 %.

It consists of a broadband optical antenna that emits entangled pairs of photons very efficiently from semiconductor quantum dots. The antenna operates in a broad wavelength range and is able to emit energetically different photons simultaneously. Also with regard to other parameters, the new photon source attains top marks: a high single-photon purity (99.8%) and a high entanglement fidelity (90%).

"Optimizing such a photon source for a variety of properties is a particular challenge to our work," says Robert Keil, who is currently completing his PhD at the IFW, thus addressing a key problem in quantum technologies. "Our entangled photons are generated by the semiconductor material commonly used in optoelectronics, gallium arsenide," adds Professor Ding.

This makes it possible to produce components based on established semiconductor technologies and thus suitable for future industrial production.

“The work represents an important step towards exploring the potential of optical quantum technologies", emphasizes Professor Schmidt, who, with his team, was able to demonstrate the fastest source of entangled photons three years ago.

The research work of IFW and t LUH is funded by the Federal Ministry of Education and Research (BMBF) as part of the joint project Q.Link.X aiming at the realization of the core component for long-range quantum communication, a so-called quantum repeater, within three years. A quantum repeater represents the quantum mechanical counterpart to the classical signal amplifier and could revolutionize the optical communication known so far.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Oliver G. Schmidt
IFW Dresden
Phone +49 351 4659-800
o.schmidt@ifw-dresden.de

Originalpublikation:

Y. Chen, M. Zopf, R. Keil, F. Ding, O.G. Schmidt, Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna, Nature Communications (2018) 9:2994, https://doi.org/10.1038/s41467-018-05456-2

Weitere Informationen:

https://www.ifw-dresden.de
https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/q-link.x

Dr. Carola Langer | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Capturing 3D microstructures in real time
03.04.2020 | DOE/Argonne National Laboratory

nachricht Graphene-based actuator swarm enables programmable deformation
02.04.2020 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

 
Latest News

TU Dresden chemists develop noble metal aerogels for electrochemical hydrogen production and other applications

06.04.2020 | Life Sciences

Lade-PV Project Begins: Vehicle-integrated PV for Electrical Commercial Vehicles

06.04.2020 | Power and Electrical Engineering

Lack of Knowledge and Uncertainty about Algorithms in Online Services

06.04.2020 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>