In future, commercial vehicles will not only have to emit less CO2 but also meet stricter exhaust emission limits. Many experts expect that this could herald the end for fossil diesel. One possible alternative is dimethyl ether: The highly volatile substance burns very cleanly and can be produced from renewable energy. Empa is investigating this new powertrain concept using a special test engine. Operating a fleet of trucks is a tough business. Forget trucker romance; strong competition and high price…
A team of physicists led by researchers from the University of Oldenburg, Germany, have recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial. Theoretical simulations confirmed the experimental finding. Whether in solar cells, in photosynthesis or in the human eye: when light falls on the material, a green leaf or the retina, certain molecules transport energy and charge. This ultimately leads to the separation of charges and the generation of electricity. Molecular funnels, so-called…
Researchers at the National Institute of Standards and Technology (NIST) have invented a miniature thermometer with big potential applications such as monitoring the temperature of processor chips in superconductor-based quantum computers, which must stay cold to work properly. NIST’s superconducting thermometer measures temperatures below 1 Kelvin (minus 272.15 ?C or minus 457.87 ?F), down to 50 milliKelvin (mK) and potentially 5 mK. It is smaller, faster and more convenient than conventional cryogenic thermometers for chip-scale devices and could be mass…
With just a 50-million-electron jumpstart, sensors can power themselves for more than a year. Shantanu Chakrabartty’s laboratory has been working to create sensors that can run on the least amount of energy. His lab has been so successful at building smaller and more efficient sensors, that they’ve run into a roadblock in the form of a fundamental law of physics. Sometimes, however, when you hit what appears to be an impenetrable roadblock, you just have to turn to quantum physics…
Liquids aren’t as well behaved in space as they are on Earth. Inside a spacecraft, microgravity allows liquids to freely slosh and float about. This behavior has made fuel quantity in satellites difficult to pin down, but a new prototype fuel gauge engineered at the National Institute of Standards and Technology (NIST) could offer an ideal solution. The gauge, described in the Journal of Spacecraft and Rockets, can digitally recreate a fluid’s 3D shape based on its electrical properties. The…
Against the background of the global energy transition, the development of new technologies and characterization methods for thermochemical and electrochemical systems is becoming more significant. In context of the National Innovation Programme for Hydrogen and Fuel Cell, the Fraunhofer Institute for Solar Energy Systems ISE has expanded its R&D infrastructure and now operates one of the few facilities worldwide for High Temperature Near-Ambient Pressure X-ray Photoelectron Spectroscopy (HT-NAP-XPS). With this, the institute sets yet another milestone for the development of…
New approach facilitates the control of reversible conductivity in semiconductors. The semiconductor gallium oxide is thought to be a promising candidate for potential use in power electronics. So far, however, a number of obstacles have stood in its path, especially how to specifically influence the material’s electrical conductivity. In a study published in the journal Scientific Reports (DOI: 10.1038/s41598-020-62948-2), a team of researchers involving scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have now demonstrated how the conductivity of gallium oxide…
Slinky-like sensor is ultra-sensitive and resilient. Think about your favorite t-shirt, the one you’ve worn a hundred times, and all the abuse you’ve put it through. You’ve washed it more times than you can remember, spilled on it, stretched it, crumbled it up, maybe even singed it leaning over the stove once. We put our clothes through a lot and if the smart textiles of the future are going to survive all that we throw at them, their components are…
Researchers from Osaka University polished the hardest known material without damaging it, which will help accelerate its use in advanced electronics. Silicon has been the workhorse of electronics for decades because it is a common element, is easy to process, and has useful electronic properties. A limitation of silicon is that high temperatures damage it, which limits the operating speed of silicon-based electronics. Single-crystal diamond is a possible alternative to silicon. Researchers recently fabricated a single-crystal diamond wafer, but common…
The EU research project “Center of Excellence in Combustion” (CoEC), granted with a budget of over 5.6 Million Euro, has started. Eleven partners from eight countries are involved – including the “Institute of Simulation of reactive Thermo-Fluid Systems“ and “Institute for Energy and Power Plant Technology” of TU Darmstadt. With the European Green Deal the EU has set the goal reaching climate neutrality in its energy and transport sector. To make this possible in combustion processes, new innovative concepts on…
Improvement of heat exchange by means of metallized zeolites The heating season in Germany has started again and in terms of a sustainable energy supply, concepts for an effective heat utilization are needed. In this context, thermal storage facilities, which are flexible in use and have high storage capacities, are moving into focus. Thermal storage systems based on zeolite materials offer great potential, but have so far suffered from a lack of efficient heat transfer between storage material and heat…
Can tomorrow’s energy supply be freed of CO2 Fraunhofer researchers want to answer that question with a consortium of partners in ZO.RRO, a joint project underway in the German state of Thuringia. They are developing a complex IT ecosystem to facilitate the systemic exit from fossil fuels – a package of IT solutions designed to slash greenhouse gas emissions. This research venture centers on system services, which account for up to 20 percent of CO2 emissins. Germany is off to…
Advance could lead to new generation of ultrafast computer chips that retain data even when there is no power. Spintronic devices are attractive alternatives to conventional computer chips, providing digital information storage that is highly energy efficient and also relatively easy to manufacture on a large scale. However, these devices, which rely on magnetic memory, are still hindered by their relatively slow speeds, compared to conventional electronic chips. In a paper published in the journal Nature Electronics, an international team…
A collaboration of scientists from the Max Planck Institute for Polymer Research (MPI-P) in Germany and the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have recently scrutinized organic solar cells and derived design rules for light-absorbing dyes that can help to make these cells more efficient, while tailoring the absorption spectrum of the cells to the needs of the chosen application. Most of us are familiar with silicon solar cells, which can be found on the…
By expanding on existing designs for electrodes of ultra-thin solar panels, Stanford researchers and collaborators in Korea have developed a new architecture for OLED – organic light-emitting diode – displays that could enable televisions, smartphones and virtual or augmented reality devices with resolutions of up to 10,000 pixels per inch (PPI). (For comparison, the resolutions of new smartphones are around 400 to 500 PPI.) Such high-pixel-density displays will be able to provide stunning images with true-to-life detail – something that…
Empa researchers succeeded in developing a material that works like a luminescent solar concentrator and can even be applied to textiles. This opens up numerous possibilities for producing energy directly where it is needed, i.e. in the use of everyday electronics. Our hunger for energy is insatiable, it even continues to rise with the increasing supply of new electronic gadgets. What’s more, we are almost always on the move and thus permanently dependent on a power supply to recharge our…