Power and Electrical Engineering

Power and Electrical Engineering

New Battery Tech Enhances Renewable Energy Storage Solutions

Columbia Engineers develop new powerful battery “fuel” — an electrolyte that not only lasts longer but is also cheaper to produce. Renewable energy sources like wind and solar are critical to sustaining our planet, but they come with a big challenge: they don’t always generate power when it’s needed. To make the most of them, we need efficient and affordable ways to store the energy they produce, so we have power even when the wind isn’t blowing or the sun…

Power and Electrical Engineering

Low-Noise Amplifiers Enhance Arctic Weather Satellite Data

Collecting accurate weather data of the Arctic for the first time and improving forecasts and climate observations worldwide—that is the task of the Arctic Weather Satellite (AWS), which ESA sent on its way to its low-Earth orbit in mid-August. It uses a state-of-the-art microwave radiometer that contains four low-noise amplifiers from Fraunhofer IAF with world-leading InGaAs mHEMT technology. At EuMW 2024 in Paris, the Freiburg-based institute will present exhibits of the amplifiers installed in the AWS as well as other…

Power and Electrical Engineering

Energy-Saving Computing: Magnetic Whirls Detect Hand Gestures

Brownian reservoir computing allows to detect human hand gestures on the basis of diffusion and displacement of skyrmions / Results published in Nature Communications. Researchers at Johannes Gutenberg University Mainz (JGU) have managed to enhance the framework of Brownian reservoir computing by recording and transferring hand gestures to the system which then used skyrmions to detect these individual gestures. “We were impressed to see that our hardware approach and concept worked so well – and even better than energy-intensive software…

Power and Electrical Engineering

Breakthrough Discovery to Extend EV Battery Lifespan

– hasten energy transition. Batteries lose capacity over time, which is why older cellphones run out of power more quickly.  This common phenomenon, however, is not completely understood. Now, an international team of researchers, led by an engineer at the University of Colorado Boulder, has revealed the underlying mechanism behind such battery degradation. Their discovery could help scientists to develop better batteries, which would allow electric vehicles to run farther and last longer, while also advancing energy storage technologies that would…

Power and Electrical Engineering

Cost-Effective High-Speed Fuel Cell Production Innovations

The Fraunhofer Institute for Laser Technology ILT will show experts from the hydrogen industry how advanced laser technologies are helping to pave the way for the breakthrough of hydrogen technology at the international trade fair and conference Hy-fcell, which will take place in Stuttgart on October 8 and 9, 2024. At stand 4E51 in hall 4, the Aachen-based institute will be demonstrating which innovations can meet the growing demand for hydrogen technology and how laser technology increases efficiency, reduces costs…

Power and Electrical Engineering

Breakthrough Technique Enables Mass Production of Metal Nanowires

A group from Nagoya University in Japan has created a new technique for growing the tiny metal nanowires (NWs) that are expected to be used in next-generation electronics. Their results suggest a way to mass produce pure metal NWs, which has until now limited their use. The new technique promises to enhance the efficiency of electronics production, including circuitry, LEDs, and solar cells. The study was published in Science. Mass production of NWs has been challenging because of the difficulties of scaling…

Power and Electrical Engineering

Solar Power Meets Farming: New Tool Optimizes PV Materials

Scientists from Swansea University have developed a new tool to help identify optimal photovoltaic (PV) materials capable of maximising crop growth while generating solar power. In a recent study published in Solar RRL, academics from the University’s Department of Physics have been exploring the effect of semi-transparent PV materials placed over crops – an exemplary application of agrivoltaics (solar panels combined with agricultural settings). As part of this work, the team has developed an innovative freeware tool that predicts the…

Power and Electrical Engineering

Mobile Test Platform Enhances Offshore Wind Turbine Testing

Offshore wind energy… Public power grids are highly complex systems. Wind turbine manufacturers have to comply with technical guidelines when connecting new turbines to avoid putting grid stability at risk. In the Mobil-Grid-CoP project, researchers at the Fraunhofer Institute for Wind Energy Systems IWES have developed a mobile test platform that enables realistic tests to be performed at full load, even on offshore wind turbines out in the open. The technology is assisting in the process of validating and certifying…

Power and Electrical Engineering

Lightweight EV Battery Enclosures Cut Carbon Emissions Efforts

Functionally integrated lightweight design in electric mobility. More charging power, higher range, lower environmental impact: In the COOLBat joint research project, researchers from the Fraunhofer Institute for Machine Tools and Forming Technology IWU have teamed up with partners to develop next-generation battery enclosures for electric vehicles. The objective is to make the enclosures, a central component in any electric vehicle, lighter and cut the carbon dioxide emitted to manufacture them by 15 percent. The project partners aim to achieve this…

Power and Electrical Engineering

New Gel Filling Enhances Safety and Performance in Lithium-Ion Batteries

Improved safety and performance: A new type of gel, developed by chemists at the Martin Luther University Halle-Wittenberg (MLU), could help to make lithium-ion batteries safer and more powerful. The gel is designed to prevent the highly flammable electrolyte fluid from leaking. Initial lab studies show that it also improves the performance and service life of the batteries. The researchers report on their work in the journal “Advanced Functional Materials”. Lithium-ion batteries are real powerhouses. “They charge faster than conventional…

Power and Electrical Engineering

New Method Boosts Lithium-Ion Battery Performance by 50%

Charging lithium-ion batteries at high currents just before they leave the factory is 30 times faster and increases battery lifespans by 50%, according to a study at the SLAC-Stanford Battery Center. A lithium-ion battery’s very first charge is more momentous than it sounds. It determines how well and how long the battery will work from then on – in particular, how many cycles of charging and discharging it can handle before deteriorating. In a study published today in Joule, researchers at…

Power and Electrical Engineering

NASA and ESA Missions Unlock Secrets of Solar Wind Energy

Since the 1960s, astronomers have wondered how the Sun’s supersonic “solar wind,” a stream of energetic particles that flows out into the solar system, continues to receive energy once it leaves the Sun. Now, they may have discovered the answer. Since the 1960s, astronomers have wondered how the Sun’s supersonic “solar wind,” a stream of energetic particles that flows out into the solar system, continues to receive energy once it leaves the Sun. Now, thanks to a lucky lineup of…

Power and Electrical Engineering

TRUMPF Unveils High-Power Laser for Advanced Material Processing

A new ultrashort pulse (USP) laser beam source from TRUMPF, designed for industrial use, will significantly expand the range of applications of USP laser processes. The Fraunhofer ILT will be systematically exploring the potential of this beam source with an average output of 1 kW in the coming months. Among other things, experiments are planned to optimize processes in battery and fuel cell production, toolmaking, semiconductor technology, as well as to test various beam guidance strategies. Many of these pilot…

Power and Electrical Engineering

Fission Chips: Vinegar’s Role in Next-Gen UV Sensors

Researchers at Macquarie University have developed a new way to produce ultraviolet (UV) light sensors, which could lead to more efficient and flexible wearable devices. The study, published in the journal Small in July, shows how acetic acid vapour – essentially vinegar fumes – can rapidly improve the performance of zinc oxide nanoparticle-based sensors without using high-temperatures for processing. Co-author Professor Shujuan Huang, from the School of Engineering at Macquarie University, says: “We found by briefly exposing the sensor to…

Power and Electrical Engineering

New Metal-Organic Framework Boosts Li Battery Performance in Cold

… as an anode material for Li batteries operating in freezing conditions. Achieved a discharge capacity five times higher than that of graphite anode material, even in environments as low as minus 20 degrees Celsius. The Korea Institute of Energy Research (KIER) has developed a redox-active metal-organic hybrid electrode material (SKIER-5) for Li batteries that remains stable in cold conditions as low as minus 20 degrees Celsius. By addressing the limitations of graphite as an anode material of conventional Li batteries under…

Power and Electrical Engineering

Vertical Farming: Boosting Protein Supply for a Growing World

A Contribution to Protein Supply for the Growing Global Population. To ensure that food proteins do not become scarce in the future despite extreme weather conditions and increasing environmental stress, six Fraunhofer Institutes are focusing on indoor farming systems in the lighthouse project “FutureProteins” (alternative protein sources). How can wheatgrass, alfalfa, and potatoes be successfully grown indoors without soil, using only artificial lighting? And are these methods not only ecologically sustainable but also economically viable? Fraunhofer IWU is focused on…

Feedback